封面
市場調查報告書
商品編碼
1871164

汽車網路安全硬體市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)

Automotive Cybersecurity Hardware Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 235 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球汽車網路安全硬體市場價值為 21 億美元,預計到 2034 年將以 11.1% 的複合年成長率成長至 58 億美元。

汽車網路安全硬體市場 - IMG1

隨著車輛向高度互聯的軟體定義平台演進,網路威脅情勢顯著擴大。 ECU、感測器、數位座艙和遠端資訊處理系統的日益整合,使得車輛更容易遭受網路威脅。因此,市場對能夠保護車輛關鍵功能並維護運作完整性的硬體級網路安全系統的需求激增。原始設備製造商 (OEM) 和一級供應商正在嵌入安全元件,以防止資料外洩、未經授權的存取和功能中斷。集中式車輛架構、OTA 軟體更新以及日益嚴格的汽車網路安全合規法規等趨勢正在推動市場加速發展。隨著互聯互通成為現代出行方式的基石,網路安全硬體在確保安全可靠的駕駛體驗方面發揮著至關重要的作用。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 21億美元
預測值 58億美元
複合年成長率 11.1%

2024年,硬體安全模組(HSM)市佔率達到50%,預計2025年至2034年將以10.8%的複合年成長率成長。這些模組作為基礎安全元件,在車輛核心系統中提供金鑰管理、加密處理和防篡改功能。它們部署在電子控制單元(ECU)、網域控制器和連網平台中,支援安全通訊、認證軟體功能和即時網路防禦能力。汽車製造商越來越依賴HSM來滿足監管要求並降低車輛網路中日益成長的網路安全風險。

2024年乘用車市場市佔率達82%,預計到2034年將以11.3%的複合年成長率成長。此細分市場的成長主要得益於數位系統在日常車輛(包括電動和混合動力車型)中的廣泛應用。安全微控制器、硬體安全模組(HSM)和可信任硬體元件如今已成為資訊娛樂系統、高級駕駛輔助系統(ADAS)、車聯網(V2X)和空中下載(OTA)更新框架的標準組件。這些解決方案確保了安全的資料交換、系統完整性,並符合ISO/SAE 21434和UNECE WP.29等國際標準,使其成為下一代汽車平台不可或缺的一部分。

2024年,美國汽車網路安全硬體市場佔81.1%的市場佔有率,市場規模達6.1億美元。憑藉其先進的汽車生態系統、高電動車普及率以及不斷完善的監管體系,美國已成為網路安全硬體的強勁需求中心。汽車製造商正在部署加密模組和先進的ECU(電子控制單元),以應對互聯和自動駕駛汽車面臨的威脅。美國強勁的監管勢頭和強大的製造業基礎將繼續推動嵌入式硬體保護措施在商用和乘用車隊中的應用。

活躍於汽車網路安全硬體市場的關鍵企業包括C2A Security、英飛凌科技(Infineon Technologies AG)、意法半導體(STMicroelectronics NV)、瑞薩電子(Renesas Electronics)、微芯科技(Microchip Technology)、亞德諾半導體(Analog Devices)、NXSduct(Mirctors) Instruments)、GuardKnox和Escrypt。全球汽車網路安全硬體市場的領導者正大力投資於安全硬體IP、晶片級加密技術和可擴展的平台架構,以增強其競爭優勢。各公司優先考慮與集中式車輛架構和網域控制器相容的整合就緒型模組,例如HSM和TPM。與OEM廠商和一級供應商的合作有助於確保在早期設計階段就將相關技術納入考量,並達成長期供應協議。

目錄

第1章:方法論與範圍

第2章:執行概要

第3章:行業洞察

  • 產業生態系分析
    • 供應商格局
    • 利潤率
    • 成本結構
    • 每個階段的價值增加
    • 影響價值鏈的因素
    • 中斷
  • 產業影響因素
    • 成長促進因素
      • 日益成長的車輛互聯
      • 電氣化和自動駕駛汽車的普及
      • 嚴格的監管框架
      • 安全硬體模組的使用日益增多
    • 產業陷阱與挑戰
      • 高昂的實施和整合成本
      • 複雜系統整合
    • 市場機遇
      • 採用人工智慧驅動的安全解決方案
      • 擴展安全的OTA更新生態系統
      • 日益嚴格的監管合規要求
      • 整合雲端連線安全解決方案
  • 成長潛力分析
  • 監管環境
    • ISO 21434 網路安全工程標準
    • 聯合國R155和R156法規要求
    • SAE J3061 網路安全指南
    • NIST網路安全框架適應
    • 區域合規性和認證要求
  • 波特的分析
  • PESTEL 分析
  • 技術與創新格局
    • 加密效能與吞吐量分析
    • 安全處理延遲和即時能力
    • 威脅偵測準確率和誤報率
    • 功耗和效率指標
    • 防篡改和物理安全評估
    • 複雜性與開發時間的整合
  • 價格趨勢
    • 按地區
    • 依產品
  • 生產統計
    • 生產中心
    • 消費中心
    • 進出口
  • 成本細分分析
  • 專利分析
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物策略
    • 生產中的能源效率
    • 環保舉措
    • 碳足跡考量
  • 風險評估框架
  • 最佳情況
  • 隱私與資料保護框架分析
  • 市場成熟度與採納分析
    • 汽車資料隱私要求
    • GDPR 與區域隱私法規合規性
    • 數據匿名化與假名化技術
    • 同意管理和用戶控制
    • 跨境資料傳輸安全
  • 威脅情勢與攻擊向量分析
    • 車輛攻擊面測繪
    • 常見攻擊途徑與方法
    • 新興威脅趨勢及預測
    • 產業事件分析及經驗教訓
    • 威脅情報與資訊共享
  • 隱私與資料保護框架分析
    • 汽車資料隱私要求
    • GDPR 與區域隱私法規合規性
    • 數據匿名化與假名化技術
    • 同意管理和用戶控制
    • 跨境資料傳輸安全

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 合作夥伴關係與合作
    • 新產品發布
    • 擴張計劃和資金

第5章:市場估算與預測:依硬體分類,2021-2034年

  • 主要趨勢
  • 硬體安全模組(HSM)
  • 網路安全控制器
  • 防火牆和入侵偵測單元
  • 安全微控制器
  • 加密/解密晶片

第6章:市場估計與預測:依車輛互聯程度分類,2021-2034年

  • 主要趨勢
  • 連網汽車
  • 半自主
  • 全自動駕駛汽車
  • 非連網車輛

第7章:市場估價與預測:依車輛類型分類,2021-2034年

  • 主要趨勢
  • 搭乘用車
    • SUV
    • 轎車
    • 掀背車
  • 商用車輛
    • 輕型商用車(LCV)
    • 中型商用車(MCV)
    • 重型商用車(HCV)

第8章:市場估算與預測:依應用領域分類,2021-2034年

  • 主要趨勢
  • 高級駕駛輔助系統(ADAS)
  • 資訊娛樂和車載資訊系統
  • 動力總成和底盤
  • 車身電子設備與舒適系統
  • 通訊系統(V2X、OTA 更新)
  • 其他

第9章:市場估算與預測:依銷售管道分類,2021-2034年

  • 主要趨勢
  • OEM
  • 售後市場

第10章:市場估計與預測:依地區分類,2021-2034年

  • 主要趨勢
  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 比利時
    • 荷蘭
    • 瑞典
  • 亞太地區
    • 中國
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 新加坡
    • 韓國
    • 越南
    • 印尼
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 阿拉伯聯合大公國
    • 南非
    • 沙烏地阿拉伯

第11章:公司簡介

  • 全球參與者
    • Analog Devices
    • Blackberry
    • Infineon Technologies AG
    • Maxim Integrated Products
    • Microchip Technology
    • NXP Semiconductors
    • Qualcomm Technologies
    • Renesas Electronics Corporation
    • STMicroelectronics NV
    • Texas Instruments Incorporated
  • 區域玩家
    • Aptiv PLC
    • BMW
    • Continental AG
    • Denso
    • Harman International
    • Mercedes-Benz
    • Robert Bosch
    • Tesla
  • 新興玩家
    • Argus Cyber Security

11.3.2. C2 A 安全

    • Escrypt
    • GuardKnox
    • 卡蘭巴安保
    • 上游
簡介目錄
Product Code: 14923

The Global Automotive Cybersecurity Hardware Market was valued at USD 2.1 Billion in 2024 and is estimated to grow at a CAGR of 11.1% to reach USD 5.8 Billion by 2034.

Automotive Cybersecurity Hardware Market - IMG1

As vehicles evolve into highly connected, software-defined platforms, the threat landscape has expanded significantly. Increasing integration of ECUs, sensors, digital cockpits, and telematics systems has created greater vulnerabilities to cyber threats. In response, demand is surging for hardware-based cybersecurity systems that can secure critical vehicle functions and maintain operational integrity. OEMs and Tier-1 suppliers are embedding secure elements to prevent data breaches, unauthorized access, and functional disruptions. The market is accelerating due to trends like centralized vehicle architectures, OTA software updates, and tighter regulations around automotive cybersecurity compliance. As connectivity becomes a cornerstone of modern mobility, cybersecurity hardware is playing a pivotal role in ensuring safe and trusted driving experiences.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$2.1 Billion
Forecast Value$5.8 Billion
CAGR11.1%

In 2024, the hardware security modules segment held a 50% share and is projected to grow at a CAGR of 10.8% from 2025 to 2034. These modules act as foundational security components, delivering key management, cryptographic processing, and tamper resistance within core vehicle systems. Their deployment in ECUs, domain controllers, and connected platforms supports secure communication, authenticated software functions, and real-time cyber defense capabilities. Automakers increasingly rely on HSMs to meet regulatory mandates and mitigate rising cybersecurity risks in vehicle networks.

The passenger vehicles segment held an 82% share in 2024 and is expected to grow at a 11.3% CAGR through 2034. Growth in this segment is fueled by widespread integration of digital systems in everyday vehicles, including electric and hybrid models. Secure microcontrollers, HSMs, and trusted hardware elements are now standard components in infotainment systems, ADAS, V2X connectivity, and OTA update frameworks. These solutions ensure secure data exchange, system integrity, and alignment with international standards like ISO/SAE 21434 and UNECE WP.29, making them essential for next-gen automotive platforms.

US Automotive Cybersecurity Hardware Market held an 81.1% share and generated USD 610 million in 2024. With its advanced automotive ecosystem, high EV adoption rate, and evolving regulations, the US represents a strong demand center for cybersecurity hardware. Automakers are deploying cryptographic modules and advanced ECUs to address threats in connected and autonomous vehicles. The country's regulatory momentum and robust manufacturing base continue to support the rollout of embedded hardware protections across commercial and passenger fleets.

Key companies active in the Automotive Cybersecurity Hardware Market include C2A Security, Infineon Technologies AG, STMicroelectronics N.V., Renesas Electronics, Microchip Technology, Analog Devices, NXP Semiconductors N.V., Texas Instruments, GuardKnox, and Escrypt. Leading players in the Global Automotive Cybersecurity Hardware Market are heavily investing in secure hardware IP, chip-level cryptography, and scalable platform architectures to strengthen their competitive edge. Companies are prioritizing integration-ready modules such as HSMs and TPMs that are compatible with centralized vehicle architectures and domain controllers. Collaborations with OEMs and Tier-1 suppliers help ensure early design-phase inclusion and long-term supply agreements.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Hardware
    • 2.2.3 Vehicle connectivity level
    • 2.2.4 Vehicle
    • 2.2.5 Application
    • 2.2.6 Sales Channel
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing vehicle connectivity
      • 3.2.1.2 Electrification and autonomous vehicle adoption
      • 3.2.1.3 Stringent regulatory frameworks
      • 3.2.1.4 Increasing use of secure hardware modules
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High implementation and integration costs
      • 3.2.2.2 Complex system integration
    • 3.2.3 Market opportunities
      • 3.2.3.1 Adoption of AI-driven security solutions
      • 3.2.3.2 Expansion of secure OTA update ecosystems
      • 3.2.3.3 Increasing regulatory compliance requirements
      • 3.2.3.4 Integration of cloud-connected security solutions
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 ISO 21434 cybersecurity engineering standard
    • 3.4.2 UN-R155 & UN-R156 regulatory requirements
    • 3.4.3 SAE J3061 cybersecurity guidebook
    • 3.4.4 NIST cybersecurity framework adaptation
    • 3.4.5 Regional compliance & certification requirements
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and Innovation Landscape
    • 3.7.1 Cryptographic performance & throughput analysis
    • 3.7.2 Security processing latency & real-time capability
    • 3.7.3 Threat detection accuracy & false positive rates
    • 3.7.4 Power consumption & efficiency metrics
    • 3.7.5 Tamper resistance & physical security assessment
    • 3.7.6 Integration of complexity & development time
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By product
  • 3.9 Production statistics
    • 3.9.1 Production hubs
    • 3.9.2 Consumption hubs
    • 3.9.3 Export and import
  • 3.10 Cost breakdown analysis
  • 3.11 Patent analysis
  • 3.12 Sustainability and Environmental Aspects
    • 3.12.1 Sustainable practices
    • 3.12.2 Waste reduction strategies
    • 3.12.3 Energy efficiency in production
    • 3.12.4 Eco-friendly initiatives
    • 3.12.5 Carbon footprint considerations
  • 3.13 Risk assessment framework
  • 3.14 Best case scenarios
  • 3.15 Privacy & Data Protection Framework Analysis
  • 3.16 Market maturity & adoption analysis
    • 3.16.1 Automotive data privacy requirements
    • 3.16.2 GDPR & regional privacy regulation compliance
    • 3.16.3 Data anonymization & pseudonymization techniques
    • 3.16.4 Consent management & user control
    • 3.16.5 Cross-border data transfer security
  • 3.17 Threat landscape & attack vector analysis
    • 3.17.1 Vehicle attack surface mapping
    • 3.17.2 Common attack vectors & methodologies
    • 3.17.3 Emerging threat trends & predictions
    • 3.17.4 Industry incident analysis & lessons learned
    • 3.17.5 Threat intelligence & information sharing
  • 3.18 Privacy & data protection framework analysis
    • 3.18.1 Automotive data privacy requirements
    • 3.18.2 GDPR & regional privacy regulation compliance
    • 3.18.3 Data anonymization & pseudonymization techniques
    • 3.18.4 Consent management & user control
    • 3.18.5 Cross-border data transfer security

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East & Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Hardware, 2021 - 2034 ($ Bn, Units)

  • 5.1 Key trends
  • 5.2 Hardware security module (HSM)
  • 5.3 Network security controllers
  • 5.4 Firewalls and intrusion detection units
  • 5.5 Secure microcontrollers
  • 5.6 Encryption/decryption chips

Chapter 6 Market Estimates & Forecast, By Vehicle Connectivity Level, 2021 - 2034 ($ Bn, Units)

  • 6.1 Key trends
  • 6.2 Connected vehicles
  • 6.3 Semi-autonomous
  • 6.4 Fully autonomous vehicles
  • 6.5 Non-connected vehicles

Chapter 7 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Passenger Vehicles
    • 7.2.1 SUV
    • 7.2.2 Sedan
    • 7.2.3 Hatchback
  • 7.3 Commercial Vehicles
    • 7.3.1 Light commercial vehicles (LCV)
    • 7.3.2 Medium commercial vehicles (MCV)
    • 7.3.3 Heavy commercial vehicles (HCV)

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2034 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Advanced driver assistance systems (ADAS)
  • 8.3 Infotainment & telematics
  • 8.4 Powertrain & chassis
  • 8.5 Body electronics & comfort systems
  • 8.6 Communication systems (V2X, OTA updates)
  • 8.7 Others

Chapter 9 Market Estimates & Forecast, By Sales Channel, 2021 - 2034 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 OEM
  • 9.3 Aftermarket

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn, Units)

  • 10.1 Key trends
  • 10.2 Key trends
  • 10.3 North America
    • 10.3.1 US
    • 10.3.2 Canada
  • 10.4 Europe
    • 10.4.1 UK
    • 10.4.2 Germany
    • 10.4.3 France
    • 10.4.4 Italy
    • 10.4.5 Spain
    • 10.4.6 Belgium
    • 10.4.7 Netherlands
    • 10.4.8 Sweden
  • 10.5 Asia Pacific
    • 10.5.1 China
    • 10.5.2 China
    • 10.5.3 India
    • 10.5.4 Japan
    • 10.5.5 Australia
    • 10.5.6 Singapore
    • 10.5.7 South Korea
    • 10.5.8 Vietnam
    • 10.5.9 Indonesia
  • 10.6 Latin America
    • 10.6.1 Brazil
    • 10.6.2 Mexico
    • 10.6.3 Argentina
  • 10.7 MEA
    • 10.7.1 UAE
    • 10.7.2 South Africa
    • 10.7.3 Saudi Arabia

Chapter 11 Company Profiles

  • 11.1 Global players
    • 11.1.1 Analog Devices
    • 11.1.2 Blackberry
    • 11.1.3 Infineon Technologies AG
    • 11.1.4 Maxim Integrated Products
    • 11.1.5 Microchip Technology
    • 11.1.6 NXP Semiconductors
    • 11.1.7 Qualcomm Technologies
    • 11.1.8 Renesas Electronics Corporation
    • 11.1.9 STMicroelectronics N.V.
    • 11.1.10 Texas Instruments Incorporated
  • 11.2 Regional players
    • 11.2.1 Aptiv PLC
    • 11.2.2 BMW
    • 11.2.3 Continental AG
    • 11.2.4 Denso
    • 11.2.5 Harman International
    • 11.2.6 Mercedes-Benz
    • 11.2.7 Robert Bosch
    • 11.2.8 Tesla
  • 11.3 Emerging players
    • 11.3.1 Argus Cyber Security

11.3.2. C2 A Security

    • 11.3.3 Escrypt
    • 11.3.4 GuardKnox
    • 11.3.5 Karamba Security
    • 11.3.6 Upstream