![]() |
市場調查報告書
商品編碼
1871080
用於自動駕駛汽車的神經形態晶片市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)Neuromorphic Chips for Autonomous Vehicles Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
||||||
2024 年全球自動駕駛汽車神經形態晶片市值為 91.1 億美元,預計到 2034 年將以 20.7% 的複合年成長率成長至 591.6 億美元。

對自動駕駛汽車日益成長的需求推動了對能夠快速處理大量感測器輸入的先進運算系統的需求。模擬人腦結構的神經形態晶片,相較於傳統處理器,能夠實現更快的決策速度和更高的能源效率。隨著車輛整合多個攝影機、LiDAR和雷達技術以提升安全性和可靠性,對瞬時資料處理的需求也持續成長。隨著電動車和自動駕駛汽車的發展,能源最佳化和散熱管理已成為關鍵問題。傳統的GPU和CPU在持續執行AI任務時經常面臨過熱降頻的問題,這限制了其可擴展性。相較之下,神經形態處理器利用平行事件驅動運算僅處理相關資料,從而顯著降低功耗並提升電動車的電池效能。感測器系統的進步進一步推動了神經形態技術的廣泛應用。新一代仿生和事件驅動型感測器能夠產生針對神經形態處理最佳化的資料流,從而實現傳統架構無法實現的非同步和脈衝驅動資料處理。
| 市場範圍 | |
|---|---|
| 起始年份 | 2024 |
| 預測年份 | 2025-2034 |
| 起始值 | 91.1億美元 |
| 預測值 | 591.6億美元 |
| 複合年成長率 | 20.7% |
2024年,數位神經形態晶片市佔率達43.2%。其主導地位源於與現有汽車人工智慧系統和電子控制單元的無縫整合,使汽車製造商無需進行重大重新設計即可實現應用。與現有人工智慧框架的兼容性,以及頂級半導體製造商的大力支持,確保了該領域的可擴展性、可靠性和持續創新。
由於車載(邊緣)部署模式在即時感測器資料處理中發揮關鍵作用,預計到2024年,該模式將創造39.5億美元的市場規模。邊緣運算使車輛能夠在本地分析訊息,從而消除延遲,並實現對道路和交通狀況的即時響應。這種架構對於需要瞬間決策的安全應用至關重要,例如自動煞車和碰撞預防。
預計到2024年,美國用於自動駕駛汽車的神經形態晶片市場規模將達25億美元。美國持續受益於公共和私營部門對人工智慧和自動駕駛技術的強勁投資。強大的創新生態系統和眾多關鍵技術公司的存在,推動了用於高速即時決策的神經形態計算技術的持續研究。美國對智慧節能汽車系統的日益重視,進一步加速了神經形態晶片在汽車產業的應用。
全球自動駕駛汽車神經形態晶片市場的主要參與者包括埃森哲、Applied Brain Research Inc.、Aspinity Inc.、博格華納、BrainChip Holdings Ltd.、Cadence Design Systems Inc.、Figaro Engineering Inc.、General Vision Inc.、Grayscale AI、Gyrfalcon Technology Inc.、惠普企業發展有限公司、IBMem、Mem. Inc.、英偉達公司、Polyn Technology、Prophesee SA、高通技術公司、三星電子有限公司和索尼公司。為了鞏固自身地位,自動駕駛汽車神經形態晶片市場的領導者正優先考慮策略合作、產品創新和可擴展的生產製造。許多企業正大力投資研發,以提高晶片效率、降低功耗並提升資料處理精度。半導體公司與汽車製造商之間的合作正在加速下一代汽車系統的整合和測試。一些企業也致力於擴大其地理覆蓋範圍,並與人工智慧軟體開發商結盟,以使神經形態技術與新興的汽車標準保持一致。
The Global Neuromorphic Chips for Autonomous Vehicles Market was valued at USD 9.11 Billion in 2024 and is estimated to grow at a CAGR of 20.7% to reach USD 59.16 Billion by 2034.

The accelerating demand for self-driving vehicles is driving the need for advanced computing systems that can rapidly process vast amounts of sensory input. Neuromorphic chips, which emulate the human brain's structure, enable faster decision-making and greater energy efficiency than traditional processors. As vehicles integrate multiple cameras, LiDAR, and radar technologies to enhance safety and reliability, the requirement for instantaneous data processing continues to rise. With the evolution of electric and autonomous vehicles, energy optimization and heat management have become key concerns. Conventional GPUs and CPUs often face thermal throttling during continuous AI tasks, which limits scalability. In contrast, neuromorphic processors handle only relevant data using parallel, event-driven computation, which significantly reduces power consumption and improves battery performance in electric vehicles. The growing adoption of neuromorphic technology is further supported by advancements in sensor systems. Next-generation bio-inspired and event-based sensors produce data streams optimized for neuromorphic processing, enabling asynchronous and spike-driven data handling that is not possible with conventional architectures.
| Market Scope | |
|---|---|
| Start Year | 2024 |
| Forecast Year | 2025-2034 |
| Start Value | $9.11 billion |
| Forecast Value | $59.16 billion |
| CAGR | 20.7% |
In 2024, the digital neuromorphic chips segment accounted for a 43.2% share. Their dominance stems from seamless integration with existing automotive AI systems and electronic control units, allowing automakers to implement them without major redesigns. Their compatibility with current AI frameworks, along with strong support from top semiconductor manufacturers, ensures scalability, reliability, and consistent innovation in this segment.
The on-board (edge) deployment model generated USD 3.95 Billion in 2024, owing to its critical role in real-time sensor data processing. Edge computing allows vehicles to analyze information locally, eliminating latency and enabling instantaneous response to road and traffic conditions. This architecture is crucial for safety applications that require split-second decision-making, such as automated braking and collision prevention.
United States Neuromorphic Chips for Autonomous Vehicles Market generated USD 2.5 Billion in 2024. The U.S. continues to benefit from robust investment in artificial intelligence and autonomous driving technologies, supported by both public and private sectors. A strong innovation ecosystem and the presence of key technology firms contribute to ongoing research in neuromorphic computing for high-speed, real-time decision-making. The nation's growing focus on intelligent and energy-efficient vehicle systems further accelerates the integration of neuromorphic chips in the automotive industry.
Key companies active in the Global Neuromorphic Chips for Autonomous Vehicles Market include Accenture, Applied Brain Research Inc., Aspinity Inc., BorgWarner Inc., BrainChip Holdings Ltd., Cadence Design Systems Inc., Figaro Engineering Inc., General Vision Inc., Grayscale AI, Gyrfalcon Technology Inc., Hewlett Packard Enterprise Development LP, IBM Corporation, Intel Corporation, MemryX Inc., Micron Technology Inc., Mythic Inc., NVIDIA Corporation, Polyn Technology, Prophesee SA, Qualcomm Technologies Inc., Samsung Electronics Co. Ltd., and Sony Corporation. To strengthen their position, leading companies in the Neuromorphic Chips for Autonomous Vehicles Market are prioritizing strategic collaborations, product innovation, and scalable manufacturing. Many are investing heavily in R&D to enhance chip efficiency, reduce power usage, and improve data processing accuracy. Partnerships between semiconductor firms and automotive manufacturers are accelerating integration and testing within next-generation vehicle systems. Several players are also focusing on expanding their geographic reach and forming alliances with AI software developers to align neuromorphic technology with emerging automotive standards.