封面
市場調查報告書
商品編碼
1858876

汽車邊緣人工智慧加速器市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)

Automotive Edge AI Accelerators Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 230 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球汽車邊緣 AI 加速器市場價值為 21 億美元,預計到 2034 年將以 22.9% 的複合年成長率成長至 163 億美元。

汽車邊緣人工智慧加速器市場 - IMG1

市場擴張與現代車輛中即時處理能力的日益普及密切相關。從GPU和FPGA到ASIC和NPU等邊緣AI加速器,在實現諸如ADAS、駕駛員感知監控、智慧資訊娛樂和語音互動等複雜車載系統方面正變得不可或缺。隨著車輛向軟體定義互聯平台轉型,對快速、高效、本地化的AI運算的需求急劇成長。向電動、半自動駕駛和自動駕駛汽車的轉變進一步強化了對邊緣AI加速的需求。以超低延遲處理來自LiDAR、雷達和攝影機等感測器的海量資料流對於車輛安全和性能至關重要。此外,與網路安全、功能安全和即時空中軟體更新相關的法規要求也強化了對邊緣高效能AI硬體的需求。電動車對電池最佳化處理器的需求不斷成長,進一步推動了該領域的創新。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 21億美元
預測值 163億美元
複合年成長率 22.9%

2024年,專用積體電路(ASIC)市佔率達到44%,預計到2034年將以24.1%的複合年成長率成長。這些晶片經過精心設計,能夠以最高的能源效率和最小的延遲提供特定任務的人工智慧處理。其客製化架構支援無縫處理感知建模、決策和即時感測器資料處理等任務,使其非常適合先進的汽車應用。

中等功率(5-10W)晶片在2024年佔據58%的市場佔有率,預計在預測期內將以23.8%的複合年成長率成長。此功率範圍在性能、效率和散熱平衡之間取得了最佳平衡。它既能為進階駕駛輔助功能(例如多攝影機輸入處理和即時物體偵測)提供足夠的功率,又能將發熱量和功耗控制在車輛設計限制範圍內。此晶片市場定位精準,能夠滿足現代車輛架構日益成長的需求,這些架構既注重性能又注重節能。

北美汽車邊緣人工智慧加速器市場佔據34%的市場佔有率,預計到2024年將創造7.034億美元的市場規模。這一領先地位源於不斷完善的監管框架、對人工智慧研發的大量投資以及高度成熟的汽車技術生態系統。該地區強大的機構支援以及科技和汽車企業積極的創新舉措,加速了邊緣人工智慧硬體在商用車和乘用車領域的部署。

全球汽車邊緣人工智慧加速器市場的主要參與者包括瑞薩電子、高通、英偉達、Arm、Horizo​​n Robotics、德州儀器 (TI)、英飛凌科技、恩智浦半導體、義法半導體和Mobileye。這些領先企業正致力於整合晶片設計、策略合作和效能最佳化,以獲得競爭優勢。許多企業正在投資客製化人工智慧晶片的開發,以最大限度地提高運算能力並最大限度地降低能耗,從而滿足電動車和自動駕駛平台對邊緣處理日益成長的需求。與原始設備製造商 (OEM) 和一級供應商的合作,正在推動針對高級駕駛輔助系統 (ADAS) 和資訊娛樂系統量身定做的平台專用加速器的共同開發。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 全球的
    • 地區/國家
  • 基準估算和計算
    • 基準年計算
    • 市場估算的關鍵趨勢
  • 初步研究和驗證
    • 原始資料
  • 預報
  • 研究假設和局限性

第2章:執行概要

第3章:行業洞察

  • 產業生態系分析
    • 供應商格局
    • 利潤率分析
    • 成本結構
    • 每個階段的價值增加
    • 影響價值鏈的因素
    • 中斷
  • 產業影響因素
    • 成長促進因素
      • 先進駕駛輔助系統(ADAS)的需求日益成長
      • 自動駕駛汽車的普及率不斷提高
      • 更重視車輛安全保障
      • 政府法規促進車輛自動化
      • 互聯汽車技術的擴展
      • 人工智慧晶片技術的進步
    • 產業陷阱與挑戰
      • 先進人工智慧硬體成本高昂
      • 整合邊緣人工智慧系統的複雜性
    • 市場機遇
      • 不斷成長的電動車市場
      • 智慧車隊管理的需求日益成長
      • 新興市場對汽車人工智慧的投資
      • 晶片製造商與汽車製造商之間的合作
  • 成長潛力分析
  • 專利分析
  • 波特的分析
  • PESTEL 分析
  • 成本細分分析
  • 技術格局
    • 當前技術趨勢
    • 新興技術
  • 監管環境
    • ISO 26262 功能安全要求
    • AUTOSAR自適應平台合規性
    • ASPICE軟體開發標準
    • 網路安全標準(ISO 21434)
  • 價格趨勢
    • 按地區
    • 透過處理器
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物策略
    • 生產中的能源效率
    • 環保舉措
  • 投資與融資趨勢分析
  • 安全與網路安全框架分析
    • 硬體安全模組 (HSM) 整合
    • 安全啟動和可信任執行環境
    • 空中下載 (OTA) 更新安全性
  • 生態系夥伴關係與聯盟分析
    • 晶片OEM策略合作夥伴關係
    • 軟體平台協作
  • 總擁有成本 (TCO) 分析
    • 硬體購置成本
    • 軟體開發和整合成本
    • 驗證和認證費用
    • 製造和部署成本

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 合作夥伴關係與合作
    • 新產品發布
    • 擴張計劃和資金

第5章:市場估算與預測:依處理器分類,2021-2034年

  • 主要趨勢
  • 中央處理器(CPU)
  • 圖形處理器(GPU)
  • 專用積體電路(ASIC)
  • 現場可程式閘陣列(FPGA)

第6章:市場估算與預測:依電力產業分類,2021-2034年

  • 主要趨勢
  • 低功耗(<5W)
  • 中功率 5-10W
  • 高功率 >10W

第7章:市場估計與預測:依自主程度分類,2021-2034年

  • 主要趨勢
  • 一級
  • 二級
  • 3級
  • 4級
  • 5級

第8章:市場估算與預測:依車輛類型分類,2021-2034年

  • 主要趨勢
  • 搭乘用車
    • 掀背車
    • 轎車
    • SUV
  • 商用車輛
    • 輕型商用車(LCV)
    • 中型商用車(MCV)
    • 重型商用車(HCV)

第9章:市場估計與預測:依地區分類,2021-2034年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 北歐
    • 俄羅斯
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 印尼
    • 菲律賓
    • 泰國
    • 韓國
    • 新加坡
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國

第10章:公司簡介

  • 全球參與者
    • Arm
    • Horizon Robotics
    • Infineon Technologies
    • MediaTek
    • Mobileye
    • NVIDIA
    • NXP Semiconductors
    • Qualcomm
    • Renesas Electronics
    • Samsung Electronics
    • STMicroelectronics
    • Texas Instruments (TI)
  • 區域玩家
    • CEVA
    • GlobalFoundries
    • HiSilicon
    • Nextchip
    • SemiDrive
    • Socionext
    • Tsinghua Unigroup
    • Verisilicon
  • 新興參與者/顛覆者
    • Ambarella
    • Hailo Technologies
    • Kneron
    • Mythic
    • SiMa.ai
簡介目錄
Product Code: 14882

The Global Automotive Edge AI Accelerators Market was valued at USD 2.1 billion in 2024 and is estimated to grow at a CAGR of 22.9% to reach USD 16.3 billion by 2034.

Automotive Edge AI Accelerators Market - IMG1

The market's expansion is tied to the growing implementation of real-time processing capabilities in modern vehicles. Edge AI accelerators ranging from GPUs and FPGAs to ASICs and NPUs are becoming indispensable in enabling complex in-vehicle systems such as ADAS, driver awareness monitoring, intelligent infotainment, and voice interaction features. As vehicles transition into software-defined, connected platforms, the demand for fast, efficient, localized AI computation has accelerated sharply. The shift toward electric, semi-autonomous, and autonomous vehicles further intensifies the need for edge-based AI acceleration. Handling massive data flows from sensors like LiDAR, radar, and cameras with ultra-low latency is critical to safety and vehicle performance. Additionally, regulatory requirements tied to cybersecurity, functional safety, and real-time over-the-air software updates are reinforcing the need for high-performance AI hardware at the edge. The increasing demand for battery-optimized processors in electric vehicles further drives innovation in this space.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$2.1 Billion
Forecast Value$16.3 Billion
CAGR22.9%

The application-specific integrated circuits (ASICs) segment held a 44% share in 2024 and is anticipated to grow at a 24.1% CAGR through 2034. These chips are engineered to deliver task-specific AI processing with maximum energy efficiency and minimal delay. Their tailored architecture supports seamless handling of tasks such as perception modeling, decision-making, and real-time sensor data processing, making them highly suitable for advanced automotive applications.

The mid-power (5-10W) segment held 58% share in 2024 and will grow at a CAGR of 23.8% through the forecast period. This power range hits the sweet spot between performance, efficiency, and thermal balance. It offers adequate capacity for advanced driver assistance functions like multi-camera input handling and live object detection while maintaining heat and power consumption levels manageable within vehicle design constraints. The segment is well-positioned to cater to rising demands from modern vehicle architectures that prioritize both performance and energy savings.

North America Automotive Edge AI Accelerators Market held a 34% share and generated USD 703.4 million in 2024. This leadership stems from a combination of evolving regulatory frameworks, substantial investments in AI development, and a highly mature automotive technology ecosystem. Strong institutional support and aggressive innovation by tech and automotive players in the region have accelerated the deployment of edge AI hardware across both commercial and passenger vehicle segments.

Key players operating in the Global Automotive Edge AI Accelerators Market include Renesas Electronics, Qualcomm, NVIDIA, Arm, Horizon Robotics, Texas Instruments (TI), Infineon Technologies, NXP Semiconductors, STMicroelectronics, and Mobileye. Leading companies in the Global Automotive Edge AI Accelerators Market are focusing on integrated chip design, strategic collaborations, and performance optimization to gain a competitive edge. Many players are investing in custom AI chip development to maximize computing power while minimizing energy consumption, addressing the growing demand for edge processing in EVs and autonomous platforms. Partnerships with OEMs and Tier 1 suppliers are enabling co-development of platform-specific accelerators tailored to ADAS and infotainment systems.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Processor
    • 2.2.3 Power
    • 2.2.4 Level of autonomy
    • 2.2.5 Vehicle
  • 2.3 TAM analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future-outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factors affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing demand for advanced driver assistance systems (ADAS)
      • 3.2.1.2 Rising adoption of autonomous vehicles
      • 3.2.1.3 Increased focus on vehicle safety and security
      • 3.2.1.4 Government regulations promoting vehicle automation
      • 3.2.1.5 Expansion of connected car technologies
      • 3.2.1.6 Advancements in AI chip technology
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High cost of advanced AI hardware
      • 3.2.2.2 Complexity in integrating edge AI systems
    • 3.2.3 Market opportunities
      • 3.2.3.1 Growing electric vehicle (EV) market
      • 3.2.3.2 Rising demand for smart fleet management
      • 3.2.3.3 Emerging markets investing in automotive AI
      • 3.2.3.4 Collaborations between chipmakers and automakers
  • 3.3 Growth potential analysis
  • 3.4 Patent analysis
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Cost breakdown analysis
  • 3.8 Technology landscape
    • 3.8.1 Current technological trends
    • 3.8.2 Emerging technologies
  • 3.9 Regulatory landscape
    • 3.9.1 ISO 26262 functional safety requirements
    • 3.9.2 AUTOSAR adaptive platform compliance
    • 3.9.3 ASPICE software development standards
    • 3.9.4 Cybersecurity standards (ISO 21434)
  • 3.10 Price trends
    • 3.10.1 By region
    • 3.10.2 By processor
  • 3.11 Sustainability and environmental aspects
    • 3.11.1 Sustainable practices
    • 3.11.2 Waste reduction strategies
    • 3.11.3 Energy efficiency in production
    • 3.11.4 Eco-friendly initiatives
  • 3.12 Investment & funding trends analysis
  • 3.13 Security & cybersecurity framework analysis
    • 3.13.1 Hardware security module (HSM) integration
    • 3.13.2 Secure boot & trusted execution environment
    • 3.13.3 Over-the-air (OTA) update security
  • 3.14 Ecosystem partnerships & alliance analysis
    • 3.14.1 Chip-OEM strategic partnerships
    • 3.14.2 Software platform collaborations
  • 3.15 Total cost of ownership (TCO) analysis
    • 3.15.1 Hardware acquisition costs
    • 3.15.2 Software development & integration costs
    • 3.15.3 Validation & certification expenses
    • 3.15.4 Manufacturing & deployment costs

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East & Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Processor, 2021 - 2034 (USD Bn, Units)

  • 5.1 Key trends
  • 5.2 Central processing unit (CPU)
  • 5.3 Graphics processing unit (GPU)
  • 5.4 Application-specific integrated circuits (ASICs)
  • 5.5 Field-programmable gate array (FPGA)

Chapter 6 Market Estimates & Forecast, By Power, 2021 - 2034 (USD Bn, Units)

  • 6.1 Key trends
  • 6.2 Low power <5W
  • 6.3 Mid power 5-10W
  • 6.4 High power >10W

Chapter 7 Market Estimates & Forecast, By Level of autonomy, 2021 - 2034 (USD Bn, Units)

  • 7.1 Key trends
  • 7.2 Level 1
  • 7.3 Level 2
  • 7.4 Level 3
  • 7.5 Level 4
  • 7.6 Level 5

Chapter 8 Market Estimates & Forecast, By Vehicle, 2021 - 2034 (USD Bn, Units)

  • 8.1 Key trends
  • 8.2 Passenger cars
    • 8.2.1 Hatchback
    • 8.2.2 Sedan
    • 8.2.3 SUV
  • 8.3 Commercial vehicles
    • 8.3.1 Light commercial vehicles (LCV)
    • 8.3.2 Medium commercial vehicles (MCV)
    • 8.3.3 Heavy commercial vehicles (HCV)

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 (USD Bn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Nordics
    • 9.3.7 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 Indonesia
    • 9.4.6 Philippines
    • 9.4.7 Thailand
    • 9.4.8 South Korea
    • 9.4.9 Singapore
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Global Players
    • 10.1.1 Arm
    • 10.1.2 Horizon Robotics
    • 10.1.3 Infineon Technologies
    • 10.1.4 MediaTek
    • 10.1.5 Mobileye
    • 10.1.6 NVIDIA
    • 10.1.7 NXP Semiconductors
    • 10.1.8 Qualcomm
    • 10.1.9 Renesas Electronics
    • 10.1.10 Samsung Electronics
    • 10.1.11 STMicroelectronics
    • 10.1.12 Texas Instruments (TI)
  • 10.2 Regional Players
    • 10.2.1 CEVA
    • 10.2.2 GlobalFoundries
    • 10.2.3 HiSilicon
    • 10.2.4 Nextchip
    • 10.2.5 SemiDrive
    • 10.2.6 Socionext
    • 10.2.7 Tsinghua Unigroup
    • 10.2.8 Verisilicon
  • 10.3 Emerging Players / Disruptors
    • 10.3.1 Ambarella
    • 10.3.2 Hailo Technologies
    • 10.3.3 Kneron
    • 10.3.4 Mythic
    • 10.3.5 SiMa.ai