![]() |
市場調查報告書
商品編碼
1858876
汽車邊緣人工智慧加速器市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)Automotive Edge AI Accelerators Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
||||||
2024 年全球汽車邊緣 AI 加速器市場價值為 21 億美元,預計到 2034 年將以 22.9% 的複合年成長率成長至 163 億美元。

市場擴張與現代車輛中即時處理能力的日益普及密切相關。從GPU和FPGA到ASIC和NPU等邊緣AI加速器,在實現諸如ADAS、駕駛員感知監控、智慧資訊娛樂和語音互動等複雜車載系統方面正變得不可或缺。隨著車輛向軟體定義互聯平台轉型,對快速、高效、本地化的AI運算的需求急劇成長。向電動、半自動駕駛和自動駕駛汽車的轉變進一步強化了對邊緣AI加速的需求。以超低延遲處理來自LiDAR、雷達和攝影機等感測器的海量資料流對於車輛安全和性能至關重要。此外,與網路安全、功能安全和即時空中軟體更新相關的法規要求也強化了對邊緣高效能AI硬體的需求。電動車對電池最佳化處理器的需求不斷成長,進一步推動了該領域的創新。
| 市場範圍 | |
|---|---|
| 起始年份 | 2024 |
| 預測年份 | 2025-2034 |
| 起始值 | 21億美元 |
| 預測值 | 163億美元 |
| 複合年成長率 | 22.9% |
2024年,專用積體電路(ASIC)市佔率達到44%,預計到2034年將以24.1%的複合年成長率成長。這些晶片經過精心設計,能夠以最高的能源效率和最小的延遲提供特定任務的人工智慧處理。其客製化架構支援無縫處理感知建模、決策和即時感測器資料處理等任務,使其非常適合先進的汽車應用。
中等功率(5-10W)晶片在2024年佔據58%的市場佔有率,預計在預測期內將以23.8%的複合年成長率成長。此功率範圍在性能、效率和散熱平衡之間取得了最佳平衡。它既能為進階駕駛輔助功能(例如多攝影機輸入處理和即時物體偵測)提供足夠的功率,又能將發熱量和功耗控制在車輛設計限制範圍內。此晶片市場定位精準,能夠滿足現代車輛架構日益成長的需求,這些架構既注重性能又注重節能。
北美汽車邊緣人工智慧加速器市場佔據34%的市場佔有率,預計到2024年將創造7.034億美元的市場規模。這一領先地位源於不斷完善的監管框架、對人工智慧研發的大量投資以及高度成熟的汽車技術生態系統。該地區強大的機構支援以及科技和汽車企業積極的創新舉措,加速了邊緣人工智慧硬體在商用車和乘用車領域的部署。
全球汽車邊緣人工智慧加速器市場的主要參與者包括瑞薩電子、高通、英偉達、Arm、Horizon Robotics、德州儀器 (TI)、英飛凌科技、恩智浦半導體、義法半導體和Mobileye。這些領先企業正致力於整合晶片設計、策略合作和效能最佳化,以獲得競爭優勢。許多企業正在投資客製化人工智慧晶片的開發,以最大限度地提高運算能力並最大限度地降低能耗,從而滿足電動車和自動駕駛平台對邊緣處理日益成長的需求。與原始設備製造商 (OEM) 和一級供應商的合作,正在推動針對高級駕駛輔助系統 (ADAS) 和資訊娛樂系統量身定做的平台專用加速器的共同開發。
The Global Automotive Edge AI Accelerators Market was valued at USD 2.1 billion in 2024 and is estimated to grow at a CAGR of 22.9% to reach USD 16.3 billion by 2034.

The market's expansion is tied to the growing implementation of real-time processing capabilities in modern vehicles. Edge AI accelerators ranging from GPUs and FPGAs to ASICs and NPUs are becoming indispensable in enabling complex in-vehicle systems such as ADAS, driver awareness monitoring, intelligent infotainment, and voice interaction features. As vehicles transition into software-defined, connected platforms, the demand for fast, efficient, localized AI computation has accelerated sharply. The shift toward electric, semi-autonomous, and autonomous vehicles further intensifies the need for edge-based AI acceleration. Handling massive data flows from sensors like LiDAR, radar, and cameras with ultra-low latency is critical to safety and vehicle performance. Additionally, regulatory requirements tied to cybersecurity, functional safety, and real-time over-the-air software updates are reinforcing the need for high-performance AI hardware at the edge. The increasing demand for battery-optimized processors in electric vehicles further drives innovation in this space.
| Market Scope | |
|---|---|
| Start Year | 2024 |
| Forecast Year | 2025-2034 |
| Start Value | $2.1 Billion |
| Forecast Value | $16.3 Billion |
| CAGR | 22.9% |
The application-specific integrated circuits (ASICs) segment held a 44% share in 2024 and is anticipated to grow at a 24.1% CAGR through 2034. These chips are engineered to deliver task-specific AI processing with maximum energy efficiency and minimal delay. Their tailored architecture supports seamless handling of tasks such as perception modeling, decision-making, and real-time sensor data processing, making them highly suitable for advanced automotive applications.
The mid-power (5-10W) segment held 58% share in 2024 and will grow at a CAGR of 23.8% through the forecast period. This power range hits the sweet spot between performance, efficiency, and thermal balance. It offers adequate capacity for advanced driver assistance functions like multi-camera input handling and live object detection while maintaining heat and power consumption levels manageable within vehicle design constraints. The segment is well-positioned to cater to rising demands from modern vehicle architectures that prioritize both performance and energy savings.
North America Automotive Edge AI Accelerators Market held a 34% share and generated USD 703.4 million in 2024. This leadership stems from a combination of evolving regulatory frameworks, substantial investments in AI development, and a highly mature automotive technology ecosystem. Strong institutional support and aggressive innovation by tech and automotive players in the region have accelerated the deployment of edge AI hardware across both commercial and passenger vehicle segments.
Key players operating in the Global Automotive Edge AI Accelerators Market include Renesas Electronics, Qualcomm, NVIDIA, Arm, Horizon Robotics, Texas Instruments (TI), Infineon Technologies, NXP Semiconductors, STMicroelectronics, and Mobileye. Leading companies in the Global Automotive Edge AI Accelerators Market are focusing on integrated chip design, strategic collaborations, and performance optimization to gain a competitive edge. Many players are investing in custom AI chip development to maximize computing power while minimizing energy consumption, addressing the growing demand for edge processing in EVs and autonomous platforms. Partnerships with OEMs and Tier 1 suppliers are enabling co-development of platform-specific accelerators tailored to ADAS and infotainment systems.