封面
市場調查報告書
商品編碼
1858843

金屬有機框架(MOFs)在氣體分離領域的市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)

Metal-Organic Frameworks (MOFs) for Gas Separation Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 210 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球用於氣體分離的金屬有機框架 (MOF) 市場價值為 911 萬美元,預計到 2034 年將以 36% 的複合年成長率成長至 1.967 億美元。

用於氣體分離的金屬有機框架(MOFs)市場 - IMG1

低能耗氣體分離替代方案需求的不斷成長推動了市場的快速擴張。傳統的低溫蒸餾和變壓吸附等技術能耗高,因此,由於金屬有機框架(MOF)材料具有更高的效率和選擇性,各行業紛紛轉向基於MOF的系統。這些材料具有高比表面積和可調控的孔結構,能夠以顯著降低的能耗實現高效的氣體分離,從而提供了一種創新解決方案。此外,全球對碳減排和環境永續發展的推動,也加速了對碳捕獲、利用和封存(CCUS)技術的投資。 MOF材料因其在選擇性二氧化碳捕獲方面的優異性能,在該領域展現出巨大的價值。溶劑熱法、機械化學法和微波輔助合成法等可擴展生產技術的進步,進一步降低了製造成本,同時提高了產量。耐用且可回收的MOF材料的開發,也有助於彌合實驗室規模創新與實際工業應用之間的差距,從而推動了整個市場的持續成長。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 911萬美元
預測值 1.967億美元
複合年成長率 36%

2024年,二氧化碳分離市場規模達到441萬美元,預計2025年至2034年將以36.4%的複合年成長率成長。該應用領域在全球脫碳進程中發揮重要作用,因此引領市場。金屬有機框架(MOF)固有的孔隙率和選擇性使其成為天然氣和煙氣環境中二氧化碳吸附的理想材料,促進了其在排放密集型產業的廣泛應用。隨著限制工業碳排放的迫切性日益增強,基於MOF的捕集系統在能源和重工業領域的部署正呈現強勁成長動能。

2024年,電力和公用事業行業的市場價值為499萬美元。該產業的領先地位得益於發電設施中MOF整合碳捕集系統的日益普及。 MOF具有高再生效率和選擇性,使其適用於燃燒後捕集應用,尤其是在高排放能源基礎設施中。

2024年,北美金屬有機框架(MOF)氣體分離市場佔39.8%的佔有率。該地區的成長主要得益於對清潔能源計劃和碳減排策略的大量投資。石油化工和電力生產等行業正在部署基於MOF的氣體分離裝置,以提高能源效率並滿足日益嚴格的環境法規。在積極的研發支持下,MOF膜開發和合成技術的不斷進步進一步推動了其在該地區的應用。

全球氣體分離用金屬有機框架(MOFs)市場的主要參與者包括Numat Technologies、Atomis Inc.、Honeywell國際、巴斯夫、大金工業等。這些領先企業正優先考慮創新、規模化生產和策略合作,以鞏固其市場地位。他們大力投資研發,致力於開發具有更高分離效率和更低再生成本的高穩定性、可回收的MOF。許多公司正專注於最佳化合成技術,例如微波輔助或機械化學工藝,以降低生產成本並提高材料的一致性。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 全球的
    • 地區/國家
  • 基準估算和計算
    • 基準年計算
    • 市場估算的關鍵趨勢
  • 初步研究和驗證
    • 原始資料
  • 預測模型
  • 研究假設和局限性

第2章:執行概要

第3章:行業洞察

  • 產業生態系分析
    • 供應商格局
    • 利潤率
    • 每個階段的價值增加
    • 影響價值鏈的因素
    • 中斷
  • 產業影響因素
    • 成長促進因素
    • 產業陷阱與挑戰
      • 供應鏈的複雜性
    • 市場機遇
  • 成長潛力分析
  • 監管環境
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 波特的分析
  • PESTEL 分析
  • 價格趨勢
    • 按地區
    • 依產品
  • 未來市場趨勢
  • 技術與創新格局
    • 當前技術趨勢
    • 新興技術
  • 專利格局
  • 貿易統計(註:僅提供重點國家的貿易統計)
    • 主要進口國
    • 主要出口國
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物策略
    • 生產中的能源效率
    • 環保舉措
  • 碳足跡考量

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 按地區
      • 北美洲
      • 歐洲
      • 亞太地區
      • 拉丁美洲
      • MEA
  • 公司矩陣分析
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 關鍵進展
    • 併購
    • 合作夥伴關係與合作
    • 新產品發布
    • 擴張計劃

第5章:市場估計與預測:依技術分類,2021-2034年

  • 主要趨勢
  • 填充床吸附劑
    • 變壓吸附應用
    • 變溫吸附系統
    • 真空變壓吸附技術
  • 純MOF膜
  • 混合基質膜
  • 結構化吸附劑
    • 整體式和蜂窩狀塗層技術
    • 傳熱傳質最佳化

第6章:市場估算與預測:依應用領域分類,2021-2034年

  • 主要趨勢
  • 一氧化碳分離
    • 燃燒後捕集應用
    • 燃燒前和工業製程整合
    • 直接空氣捕集技術整合
  • 烴類分離
    • 天然氣脫硫和加工
    • 烯烴/石蠟分離技術
    • C2/C3回收純化系統
  • 輕氣體分離
    • 氫氣純化與回收
    • 氧/氮分離技術
    • 稀有氣體的回收與循環利用
  • 特種氣體分離
    • 有毒氣體捕獲與中和
    • 冷媒回收和循環利用系統
    • 微量污染物去除技術

第7章:市場估算與預測:依最終用途產業分類,2021-2034年

  • 主要趨勢
  • 電力和公用事業部門
    • 燃煤電廠改造應用
    • 天然氣複合循環一體化
    • 電網級儲能應用
    • 公用事業規模的直接空氣捕集項目
  • 石油、天然氣和石化業
    • 煉油廠氣體處理應用
    • 天然氣處理和脫硫
    • 石油化工製程一體化
  • 製造業部門
    • 水泥業二氧化碳捕集應用
    • 鋼鐵和鋁工藝整合
    • 氨和氫氣生產純化
    • 化學製造製程最佳化
  • 電子和特種應用領域
    • 半導體有毒氣體處理
    • 製藥製程應用
    • 研究和實驗室系統
    • 特種化學品生產

第8章:市場估算與預測:依地區分類,2021-2034年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 亞太其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國
    • 中東和非洲其他地區

第9章:公司簡介

  • BASF SE
  • Numat Technologies
  • Daikin Industries
  • Honeywell International
  • Atomis Inc
  • Air Liquide
  • novoMOF AG
  • Nuada (formerly MOF Technologies Ltd)
  • Framergy Inc
  • ProfMOF
  • MOF Apps
  • Immaterial Labs
  • Mosaic Materials
  • promethean particles
  • MOFgen
簡介目錄
Product Code: 14885

The Global Metal-Organic Frameworks (MOFs) for Gas Separation Market was valued at USD 9.11 million in 2024 and is estimated to grow at a CAGR of 36% to reach USD 196.70 million by 2034.

Metal-Organic Frameworks (MOFs) for Gas Separation Market - IMG1

The rapid market expansion is fueled by the growing demand for low-energy gas separation alternatives. Traditional techniques such as cryogenic distillation and pressure swing adsorption are energy-intensive, pushing industries to shift toward MOF-based systems due to their superior efficiency and selectivity. These materials provide an innovative solution by offering high surface area and tunable pore structures, which allow for effective gas separation at significantly reduced energy requirements. Additionally, the global push toward carbon reduction and environmental sustainability is accelerating investments in carbon capture, utilization, and storage technologies. MOFs are proving especially valuable in this domain due to their performance in selective CO2 capture. Technological advancements in scalable production techniques, such as solvothermal, mechanochemical, and microwave-assisted synthesis, are further lowering fabrication costs while enhancing production volumes. The development of durable and recyclable MOFs is also helping bridge the gap between lab-scale innovation and real-world industrial deployment, contributing to the overall market's upward trajectory.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$9.11 Million
Forecast Value$196.70 Million
CAGR36%

The CO2 separation segment reached USD 4.41 million in 2024 and is forecast to grow at a CAGR of 36.4% from 2025 to 2034. This application leads the market due to its strong role in global decarbonization efforts. The inherent porosity and selectivity of MOFs make them ideal for CO2 adsorption in natural gas and flue gas environments, encouraging more widespread adoption in emission-intensive sectors. As the urgency to limit industrial carbon output intensifies, the deployment of MOF-based capture systems is seeing greater momentum across energy and heavy manufacturing segments.

The power and utilities sector was valued at USD 4.99 million in 2024. The segment's dominance is supported by rising installations of MOF-integrated carbon capture systems across power generation facilities. The ability of MOFs to deliver high regeneration efficiency and selectivity makes them suitable for post-combustion capture applications, especially in emissions-heavy energy infrastructure.

North America Metal-Organic Frameworks (MOFs) for Gas Separation Market held 39.8% share in 2024. The region's growth is driven by substantial investments in clean energy initiatives and carbon reduction strategies. Sectors such as petrochemicals and electricity generation are deploying MOF-based gas separation units to improve energy efficiency and meet tightening environmental regulations. Continuous progress in MOF membrane development and synthesis technologies, backed by active R&D, is further elevating adoption across the region.

Key players active in the Global Metal-Organic Frameworks (MOFs) for Gas Separation Market include Numat Technologies, Atomis Inc., Honeywell International, BASF SE, Daikin Industries, and others. Leading companies in the Metal-Organic Frameworks (MOFs) for Gas Separation Market are prioritizing innovation, scalability, and strategic collaboration to strengthen their market positions. They are investing significantly in R&D to develop highly stable and recyclable MOFs with enhanced separation efficiency and lower regeneration costs. Many firms are focusing on optimizing synthesis techniques such as microwave-assisted or mechanochemical processes to reduce production expenses and improve material consistency.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Technology
    • 2.2.3 Application
    • 2.2.4 End use Industry
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future Outlook and Strategic Recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Value addition at each stage
    • 3.1.4 Factor affecting the value chain
    • 3.1.5 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Supply chain complexity
    • 3.2.3 Market opportunities
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
    • 3.6.1 Technology and Innovation landscape
    • 3.6.2 Current technological trends
    • 3.6.3 Emerging technologies
  • 3.7 Price trends
    • 3.7.1 By region
    • 3.7.2 By product
  • 3.8 Future market trends
  • 3.9 Technology and Innovation landscape
    • 3.9.1 Current technological trends
    • 3.9.2 Emerging technologies
  • 3.10 Patent Landscape
  • 3.11 Trade statistics (Note: the trade statistics will be provided for key countries only)
    • 3.11.1 Major importing countries
    • 3.11.2 Major exporting countries
  • 3.12 Sustainability and Environmental Aspects
    • 3.12.1 Sustainable Practices
    • 3.12.2 Waste Reduction Strategies
    • 3.12.3 Energy Efficiency in Production
    • 3.12.4 Eco-friendly Initiatives
  • 3.13 Carbon Footprint Considerations

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 LATAM
      • 4.2.1.5 MEA
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans

Chapter 5 Market Estimates and Forecast, By Technology, 2021- 2034 (USD Million, Kilo Tons)

  • 5.1 Key trends
  • 5.2 Packed bed adsorbents
    • 5.2.1 Pressure swing adsorption applications
    • 5.2.2 Temperature swing adsorption systems
    • 5.2.3 Vacuum swing adsorption implementations
  • 5.3 Pure MOF membranes
  • 5.4 Mixed matrix membranes
  • 5.5 Structured adsorbents
    • 5.5.1 Monolith and honeycomb coating technologies
    • 5.5.2 Heat and mass transfer optimization

Chapter 6 Market Estimates and Forecast, By Application, 2021 - 2034 (USD Million, , Kilo Tons)

  • 6.1 Key trends
  • 6.2 CO? separation
    • 6.2.1 Post-combustion capture applications
    • 6.2.2 Pre-combustion and industrial process integration
    • 6.2.3 Direct air capture technology integration
  • 6.3 Hydrocarbon separation
    • 6.3.1 Natural gas sweetening and processing
    • 6.3.2 Olefin/paraffin separation technologies
    • 6.3.3 C2/C3 recovery and purification systems
  • 6.4 Light gas separation
    • 6.4.1 Hydrogen purification and recovery
    • 6.4.2 Oxygen/nitrogen separation technologies
    • 6.4.3 Noble gas recovery and recycling
  • 6.5 Specialty gas separation
    • 6.5.1 Toxic gas capture and neutralization
    • 6.5.2 Refrigerant recovery and recycling systems
    • 6.5.3 Trace contaminant removal technologies

Chapter 7 Market Estimates and Forecast, By End Use Industry, 2021 - 2034 (USD Million, , Kilo Tons)

  • 7.1 Key trends
  • 7.2 Power and utilities sector
    • 7.2.1 Coal-fired power plant retrofit applications
    • 7.2.2 Natural gas combined cycle integration
    • 7.2.3 Grid-scale energy storage applications
    • 7.2.4 Utility-scale direct air capture projects
  • 7.3 Oil, gas and petrochemicals sector
    • 7.3.1 Refinery gas processing applications
    • 7.3.2 Natural gas treatment and sweetening
    • 7.3.3 Petrochemical process integration
  • 7.4 Manufacturing industries sector
    • 7.4.1 Cement industry CO2 capture applications
    • 7.4.2 Steel and aluminum process integration
    • 7.4.3 Ammonia and hydrogen production purification
    • 7.4.4 Chemical manufacturing process optimization
  • 7.5 Electronics and specialty applications sector
    • 7.5.1 Semiconductor toxic gas handling
    • 7.5.2 Pharmaceutical process applications
    • 7.5.3 Research and laboratory systems
    • 7.5.4 Specialty chemical production

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Million, Kilo Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
    • 8.5.4 Rest of Latin America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE
    • 8.6.4 Rest of Middle East & Africa

Chapter 9 Company Profiles

  • 9.1 BASF SE
  • 9.2 Numat Technologies
  • 9.3 Daikin Industries
  • 9.4 Honeywell International
  • 9.5 Atomis Inc
  • 9.6 Air Liquide
  • 9.7 novoMOF AG
  • 9.8 Nuada (formerly MOF Technologies Ltd)
  • 9.9 Framergy Inc
  • 9.10 ProfMOF
  • 9.11 MOF Apps
  • 9.12 Immaterial Labs
  • 9.13 Mosaic Materials
  • 9.14 promethean particles
  • 9.15 MOFgen