封面
市場調查報告書
商品編碼
1858830

車載網路半導體市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)

In-Vehicle Networking Semiconductors Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球車載網路半導體市場價值為 5.389 億美元,預計到 2034 年將以 8.8% 的複合年成長率成長至 12 億美元。

車載網路半導體市場 - IMG1

這些半導體正在革新汽車電子領域,實現現代車輛中各個子系統之間的無縫高速通訊。推動市場擴張的關鍵因素包括車輛電氣化的快速發展、高級駕駛輔助系統 (ADAS) 的廣泛應用、資訊娛樂技術的增強以及車輛架構複雜性的不斷提高。隨著創新加速,製造商正優先考慮節能、相容人工智慧且注重安全性的半導體解決方案。在後疫情時代,隨著企業將重心轉向晶片在地化並加強供應鏈韌性,亞洲和歐洲等地區的半導體製造業正在蓬勃發展。亞太地區憑藉其強大的電動車、電子和汽車產業,佔據最大的市場佔有率,預計到 2024 年將達到 39%。汽車製造商和一級供應商對數位基礎設施和智慧出行領域的持續投資塑造了市場格局,推動了互聯和自動駕駛汽車對先進網路解決方案的需求。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 5.389億美元
預測值 12億美元
複合年成長率 8.8%

2024年,乘用車市佔率達到60%,預計2025年至2034年間將以7.9%的複合年成長率成長。對車載互聯、安全功能和複雜軟體架構日益成長的需求,正促使汽車製造商在緊湊型轎車、轎車和SUV中更加依賴半導體整合。隨著安全、網路安全和排放方面的監管要求日益嚴格,汽車製造商正轉向半導體,以實現即時通訊和可靠的系統協調。這些晶片正成為實現乘用車下一代功能的核心,使其成為不斷發展的汽車生態系統中不可或缺的組件。

預計2025年至2034年間,控制器區域網路(CAN)市場將以8.7%的複合年成長率成長。基於CAN的半導體裝置憑藉其強大的可靠性、成本效益以及對各種車輛設計的靈活適應性,仍然是即時汽車聯網的首選。這些晶片對於支援ADAS和連網汽車平台等關鍵應用至關重要,能夠在以安全為中心的環境中提供穩定的性能。它們能夠無縫整合到各種系統中,使其成為汽車電子領域不可或缺的組件。

亞太地區車載網路半導體市場預計在2024年將佔據39%的市場。該地區的領先地位得益於汽車電氣化的快速發展、高級駕駛輔助系統(ADAS)的日益普及以及對互聯智慧出行解決方案不斷成長的需求。強大的汽車和電子製造業基礎,加上政府的支持性政策和本地原始設備製造OEM)的投資,持續推動區域成長。不斷加強的研發投入以及對自動駕駛和連網汽車日益成長的興趣,進一步加速了亞洲各國對高性能網路晶片的需求。該地區的企業正在加大投資,擴大生產規模,並推動創新,以滿足不斷變化的汽車產業需求。

微芯科技(Microchip Technology)、瑞薩電子(Renesas Electronics)、博通(Broadcom)、大陸集團(Continental)、亞德諾半導體(Analog Devices)、高通(Qualcomm)、德州儀器(Texas Instruments)和艾爾莫半導體(Elmos Semicondu)等主要領導廠商的領導裝置市場領導者持續引車。為了鞏固自身地位,車載網路半導體產業的企業正在採取一系列策略性措施。領先企業正致力於設計可擴展、低功耗的晶片組,以支援區域架構和多域通訊系統。隨著汽車日益軟體化,優先開發支援人工智慧和網路安全增強的半導體解決方案變得至關重要。此外,各廠商也正在大力投資在地化生產設施和合作夥伴關係,以增強供應鏈穩定性並應對疫情後帶來的衝擊。與原始設備製造商(OEM)和一級供應商的合作,能夠提供符合區域法規和客戶需求的客製化解決方案。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 全球的
    • 地區/國家
  • 基準估算和計算
    • 基準年計算
    • 市場估算的關鍵趨勢
  • 初步研究和驗證
    • 原始資料
  • 預測模型
  • 研究假設和局限性

第2章:執行概要

第3章:行業洞察

  • 產業生態系分析
    • 供應商格局
    • 利潤率分析
    • 成本結構
    • 每個階段的價值增加
    • 影響價值鏈的因素
    • 中斷
  • 產業影響因素
      • 成長促進因素
      • 向車輛自動化和高級駕駛輔助系統 (ADAS) 的轉變
      • 電動車和混合動力車的普及率不斷提高
      • 向高速、集中式和區域式車輛架構轉變
      • 消費者越來越偏愛智慧、功能豐富的車輛
      • 監管重點關注車輛安全、網路安全和通訊可靠性
    • 產業陷阱與挑戰
      • 在嚴苛的汽車工況下,電子可靠性至關重要
      • 快速發展的通訊協定和標準
    • 市場機遇
      • 與電動和混合動力汽車平台整合
      • 汽車乙太網路和高速網路晶片的進步
      • ADAS、自動駕駛和連網汽車技術的擴展
      • 軟體定義和集中式車輛架構的日益普及
  • 成長潛力分析
  • 監管環境
    • 區域汽車標準差異
    • 型式認可和認證要求
    • 網路安全認證流程
    • 國際標準協調
  • 波特的分析
  • PESTEL 分析
  • 技術與創新格局
    • 當前技術趨勢
    • 新興技術
  • 專利分析
  • 成本細分分析
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物策略
    • 生產中的能源效率
    • 環保舉措
  • 碳足跡考量
  • 未來展望與路線圖
    • 下一代網路協定
    • 6G整合和超低延遲
    • 量子安全密碼學實現
    • 人工智慧驅動的網路最佳化
    • 永續網路解決方案
    • 跨產業融合趨勢
    • 監管演變和標準制定
    • 市場整合與合作策略
  • 協定標準化和互通性挑戰
    • 多協定共存要求
    • 傳統協定遷移策略
    • 跨廠商相容性問題
    • 標準機構協調複雜性
  • 成本最佳化與效能權衡
    • 網路複雜度與成本分析
    • 組件整合策略
    • 批量生產經濟學
    • 系統總成本最佳化

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • MEA
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 合作夥伴關係與合作
    • 新產品發布
    • 擴張計劃和資金

第5章:市場估算與預測:依組件分類,2021-2034年

  • 主要趨勢
  • 收發器
  • 微控制器和處理器
  • 網路交換器和網橋
  • 閘道器/控制器
  • 記憶體和介面積體電路
  • 其他

第6章:市場估價與預測:依車輛類型分類,2021-2034年

  • 主要趨勢
  • 搭乘用車
    • 掀背車
    • 轎車
    • SUV
  • 商用車輛
    • 輕型商用車
    • 中型商用車
    • 重型商用車輛
  • 電動車

第7章:市場估算與預測:依通訊協定分類,2021-2034年

  • 主要趨勢
  • 控制器區域網路(CAN)
  • 本地互連網路(LIN)
  • FlexRay
  • 面向媒體的系統傳輸(MOST)
  • 汽車乙太網路
  • 其他新興協議

第8章:市場估算與預測:依應用領域分類,2021-2034年

  • 主要趨勢
  • 動力總成和底盤系統
  • 安全與ADAS(先進駕駛輔助系統)
  • 資訊娛樂和車載資訊系統
  • 車身電子設備與舒適系統
  • 電池管理系統(BMS)
  • 自動駕駛車輛資料網路

第9章:市場估算與預測:依頻寬分類,2021-2034年

  • 主要趨勢
  • 低速網路(最高 125 kbps)
  • 中速網路(最高 1 Mbps)
  • 高速網路(10 Mbps 至 1 Gbps)
  • 超高速(>1 Gbps)

第10章:市場估計與預測:依地區分類,2021-2034年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
    • 北歐
    • 葡萄牙
    • 克羅埃西亞
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 新加坡
    • 泰國
    • 印尼
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 土耳其

第11章:公司簡介

  • 全球參與者
    • Analog Devices
    • Broadcom
    • Infineon Technologies
    • Marvell Technology
    • NXP Semiconductors
    • Qualcomm Technologies
    • Renesas Electronics
    • Texas Instruments
    • Continental
    • Elmos Semiconductor
  • 區域玩家
    • Cypress Semiconductor
    • Maxim Integrated
    • Melexis
    • Microchip Technology
    • ON Semiconductor
    • Rohm Semiconductor
    • STMicroelectronics
    • Toshiba Electronic Devices
  • 新興參與者
    • Aquantia
    • ETAS
    • Ethernovia
    • Intrepid Control Systems
    • Kvaser
    • PEAK-System Technik
    • Technica Engineering
    • TTTech Auto
    • Vector Informatik
簡介目錄
Product Code: 14871

The Global In-Vehicle Networking Semiconductors Market was valued at USD 538.9 million in 2024 and is estimated to grow at a CAGR of 8.8% to reach USD 1.2 billion by 2034.

In-Vehicle Networking Semiconductors Market - IMG1

These semiconductors are revolutionizing the automotive electronics landscape by enabling seamless, high-speed communication between various subsystems in modern vehicles. Key factors fueling market expansion include the rapid shift toward vehicle electrification, the widespread integration of advanced driver-assistance systems (ADAS), enhanced infotainment technologies, and increasing vehicle architecture complexity. With innovation accelerating, manufacturers are prioritizing energy-efficient, AI-compatible, and security-focused semiconductor solutions. As companies shift their focus to chip localization and strengthen supply chain resilience in the post-pandemic era, regions like Asia and Europe are witnessing a surge in semiconductor manufacturing. Asia-Pacific holds the largest market share, accounting for 39% in 2024, thanks to its robust EV, electronics, and automotive sectors. The market landscape is shaped by continued investments in digital infrastructure and smart mobility by automakers and Tier-1 suppliers, driving demand for advanced networking solutions across connected and autonomous vehicles.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$538.9 Million
Forecast Value$1.2 Billion
CAGR8.8%

The passenger vehicles segment held a 60% share in 2024 and is expected to grow at a CAGR of 7.9% between 2025 and 2034. Increasing demand for in-car connectivity, safety features, and sophisticated software architecture is pushing automakers to rely more heavily on semiconductor integration in compact cars, sedans, and SUVs. As regulatory requirements tighten around safety, cybersecurity, and emissions, vehicle manufacturers are turning to semiconductors for real-time communication and reliable system coordination. These chips are becoming central to enabling next-generation features in passenger vehicles, positioning them as essential components in the evolving automotive ecosystem.

The controller area network (CAN) segment is projected to grow at a CAGR of 8.7% from 2025 to 2034. CAN-based semiconductors continue to be the preferred choice for real-time automotive networking due to their robust reliability, cost efficiency, and flexibility in adapting to a wide range of vehicle designs. These chips are particularly vital in supporting critical applications such as ADAS and connected car platforms, offering consistent performance in safety-centric environments. Their ability to integrate seamlessly across diverse systems makes them an indispensable component in automotive electronics.

Asia-Pacific In-Vehicle Networking Semiconductors Market held a 39% share in 2024. The region's dominance is supported by rapid advancements in vehicle electrification, increasing adoption of ADAS, and growing demand for connected and smart mobility solutions. Strong automotive and electronics manufacturing bases, along with supportive government policies and local OEM investments, continue to drive regional growth. Enhanced R&D initiatives and rising interest in autonomous and connected vehicles are further accelerating the need for high-performance networking chips in countries across Asia. Companies across the region are investing in scaling production and pushing innovation forward to meet evolving automotive requirements.

Major players like Microchip Technology, Renesas Electronics, Broadcom, Continental, Analog Devices, Qualcomm, Texas Instruments, and Elmos Semiconductor continue to shape the In-Vehicle Networking Semiconductors Market. To reinforce their position, companies in the in-vehicle networking semiconductors industry are adopting a range of strategic initiatives. Leading firms are focusing on designing scalable, low-power chipsets that support zonal architectures and multi-domain communication systems. Prioritizing AI-ready and cybersecurity-enhanced semiconductor solutions has become central as vehicles become increasingly software-defined. Additionally, players are investing heavily in localized production facilities and partnerships to enhance supply chain stability and address post-pandemic disruptions. Collaborations with OEMs and Tier-1 suppliers enable tailored solutions that align with regional regulations and customer demands.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Component
    • 2.2.3 Vehicle
    • 2.2.4 Communication Protocol
    • 2.2.5 Application
    • 2.2.6 Bandwidth
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
      • 3.2.1.1 Growth drivers
      • 3.2.1.2 Shifts toward vehicle automation and ADAS
      • 3.2.1.3 Growing adoption of electric and hybrid vehicles
      • 3.2.1.4 Shift toward high-speed, centralized, and zonal vehicle architectures
      • 3.2.1.5 Increasing consumer preference for smart, feature-rich vehicles
      • 3.2.1.6 Regulatory focus on vehicle safety, cybersecurity, and communication reliability
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Electronic reliability under harsh automotive conditions
      • 3.2.2.2 Rapidly evolving communication protocols and standards
    • 3.2.3 Market opportunities
      • 3.2.3.1 Integration with electric and hybrid vehicle platforms
      • 3.2.3.2 Advancements in automotive Ethernet and high-speed networking chips
      • 3.2.3.3 Expansion of ADAS, autonomous, and connected vehicle technologies
      • 3.2.3.4 Rising adoption of software-defined and centralized vehicle architectures
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 Regional automotive standards variations
    • 3.4.2 Type approval and homologation requirements
    • 3.4.3 Cybersecurity certification processes
    • 3.4.4 International standards harmonization
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Patent analysis
  • 3.9 Cost breakdown analysis
  • 3.10 Sustainability and environmental aspects
    • 3.10.1 Sustainable practices
    • 3.10.2 Waste reduction strategies
    • 3.10.3 Energy efficiency in production
    • 3.10.4 Eco-friendly Initiatives
  • 3.11 Carbon footprint considerations
  • 3.12 Future outlook and roadmap
    • 3.12.1 Next-generation networking protocols
    • 3.12.2. 6 G integration and ultra-low latency
    • 3.12.3 Quantum-safe cryptography implementation
    • 3.12.4 AI-driven network optimization
    • 3.12.5 Sustainable networking solutions
    • 3.12.6 Cross-industry convergence trends
    • 3.12.7 Regulatory evolution and standards development
    • 3.12.8 Market consolidation and partnership strategies
  • 3.13 Protocol standardization and interoperability challenges
    • 3.13.1 Multi-protocol coexistence requirements
    • 3.13.2 Legacy protocol migration strategies
    • 3.13.3 Cross-vendor compatibility issues
    • 3.13.4 Standards body coordination complexity
  • 3.14 Cost optimization vs performance trade-offs
    • 3.14.1 Network complexity vs cost analysis
    • 3.14.2 Component integration strategies
    • 3.14.3 Volume production economics
    • 3.14.4 Total system cost optimization

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans and funding

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 (USD Mn, Units)

  • 5.1 Key trends
  • 5.2 Transceivers
  • 5.3 Microcontrollers & processors
  • 5.4 Network switches & bridges
  • 5.5 Gateways / controllers
  • 5.6 Memory & interface ICs
  • 5.7 Others

Chapter 6 Market Estimates & Forecast, By Vehicle, 2021 - 2034 (USD Mn, Units)

  • 6.1 Key trends
  • 6.2 Passenger cars
    • 6.2.1 Hatchbacks
    • 6.2.2 Sedans
    • 6.2.3 SUVS
  • 6.3 Commercial vehicles
    • 6.3.1 Light commercial vehicles
    • 6.3.2 Medium commercial vehicles
    • 6.3.3 Heavy commercial vehicles
  • 6.4 Electric vehicles

Chapter 7 Market Estimates & Forecast, By Communication Protocol, 2021 - 2034 (USD Mn, Units)

  • 7.1 Key trends
  • 7.2 Controller area network (CAN)
  • 7.3 Local interconnect network (LIN)
  • 7.4 FlexRay
  • 7.5 Media oriented systems transport (MOST)
  • 7.6 Automotive ethernet
  • 7.7 Other emerging protocols

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2034 (USD Mn, Units)

  • 8.1 Key trends
  • 8.2 Powertrain & chassis systems
  • 8.3 Safety & ADAS (advanced driver assistance systems)
  • 8.4 Infotainment & telematics
  • 8.5 Body electronics & comfort systems
  • 8.6 Battery management systems (BMS)
  • 8.7 Autonomous vehicle data networking

Chapter 9 Market Estimates & Forecast, By Bandwidth, 2021 - 2034 (USD Mn, Units)

  • 9.1 Key trends
  • 9.2 Low-speed networks (up to 125 kbps)
  • 9.3 Mid-speed networks (up to 1 Mbps)
  • 9.4 High-speed networks (10 Mbps to 1 Gbps)
  • 9.5 Ultra-high speed (>1 Gbps)

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2034 (USD Mn, Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Spain
    • 10.3.6 Russia
    • 10.3.7 Nordics
    • 10.3.8 Portugal
    • 10.3.9 Croatia
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 Australia
    • 10.4.5 South Korea
    • 10.4.6 Singapore
    • 10.4.7 Thailand
    • 10.4.8 Indonesia
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
  • 10.6 MEA
    • 10.6.1 South Africa
    • 10.6.2 Saudi Arabia
    • 10.6.3 UAE
    • 10.6.4 Turkey

Chapter 11 Company Profiles

  • 11.1 Global Players
    • 11.1.1 Analog Devices
    • 11.1.2 Broadcom
    • 11.1.3 Infineon Technologies
    • 11.1.4 Marvell Technology
    • 11.1.5 NXP Semiconductors
    • 11.1.6 Qualcomm Technologies
    • 11.1.7 Renesas Electronics
    • 11.1.8 Texas Instruments
    • 11.1.9 Continental
    • 11.1.10 Elmos Semiconductor
  • 11.2 Regional Players
    • 11.2.1 Cypress Semiconductor
    • 11.2.2 Maxim Integrated
    • 11.2.3 Melexis
    • 11.2.4 Microchip Technology
    • 11.2.5 ON Semiconductor
    • 11.2.6 Rohm Semiconductor
    • 11.2.7 STMicroelectronics
    • 11.2.8 Toshiba Electronic Devices
  • 11.3 Emerging Players
    • 11.3.1 Aquantia
    • 11.3.2 ETAS
    • 11.3.3 Ethernovia
    • 11.3.4 Intrepid Control Systems
    • 11.3.5 Kvaser
    • 11.3.6 PEAK-System Technik
    • 11.3.7 Technica Engineering
    • 11.3.8 TTTech Auto
    • 11.3.9 Vector Informatik