封面
市場調查報告書
商品編碼
1782122

人工智慧生成內容 (AIGC) 市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

Artificial Intelligence Generated Content (AIGC) Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 170 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024年,全球人工智慧生成內容市場規模達270億美元,預計到2034年將以11.6%的複合年成長率成長,達到716億美元。傳統內容創作曾經是一項勞力密集任務,如今正由先進的人工智慧技術驅動,轉變為精簡的自動化流程。隨著人工智慧模型日益複雜,內容製作不再局限於小眾創意團隊,而是正在成為一項核心企業職能。各行各業的組織都優先考慮培養精通人工智慧的團隊,以便有效地引導快速工程、合乎道德的內容使用和工作流程最佳化。這一趨勢正在將人工智慧生成內容的技能提升轉化為數位轉型策略的關鍵要素。

人工智慧生成內容(AIGC)市場 - IMG1

透過公共機構與私部門創新者之間的合作,人們日益重視技能開發,這進一步推動了市場擴張。各機構正攜手合作,創造結構化的學習框架和認證體系,幫助勞動力做好準備,並應對人工智慧驅動的內容創作需求。同時,AIGC 解決方案提供者正在將培訓模組整合到其平台中,確保從創意人員到企業專業人士等用戶都能獲得可擴展的教育資源。這些努力正在加速從行銷、娛樂到教育和電子商務等各行業的應用。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 270億美元
預測值 716億美元
複合年成長率 11.6%

市場按組件細分為解決方案和服務。 2024年,解決方案佔據最大佔有率,佔總收入的近68%。預計2025年至2034年期間,該細分市場的複合年成長率將超過12%。 AIGC解決方案包括基於人工智慧的平台,可產生文字、圖像、視訊、音訊甚至程式碼,為企業提供動態內容開發工具。這些技術支援自動化、即時個人化和創意敏捷性,這對於依賴頻繁內容更新和品牌互動的行業至關重要。企業越來越依賴這些平台來簡化行銷活動,增強客戶溝通,並打造沉浸式數位體驗。

根據部署方式,AIGC 市場可分為雲端和本地部署兩種模式。雲端解決方案在 2024 年佔據 64% 的市場佔有率,佔據市場主導地位,預計預測期內複合年成長率將超過 13%。雲端工具的受歡迎程度源自於其可擴展性、易於整合和即時存取性。雲端基礎架構允許使用者透過 API 和軟體即服務 (SaaS) 模式產生內容,從而促進更快的迭代和持續的工作流程改進。這些工具消除了基礎設施的限制,使企業能夠在多個平台上擴展創意輸出,因此在數位行銷、教育和電子商務等充滿活力的行業中尤其受歡迎。

根據技術,市場細分為幾個關鍵創新領域,包括自然語言處理 (NLP)、生成對抗網路 (GAN)、Transformer 模型、文字轉圖像模型、文字轉視訊/3D 模型以及語音轉文字或文字轉語音系統。其中,Transformer 模型在 2024 年佔據主導地位。這些模型以其大規模處理能力而聞名,是許多領先的 AIGC 應用的基礎。它們能夠理解上下文、產生類似人類的反應並跨格式合成訊息,這使得它們對於支援多模態 AI 平台至關重要。隨著 Transformer 架構的不斷發展,它們正在賦能日益精細化和適應性更強的內容創作系統。

從地區來看,美國已成為北美領先的市場,佔據該地區約 82% 的佔有率,並在 2024 年創造了約 76 億美元的收入。美國佔據主導地位的動力源於其強大的創新生態系統、對人工智慧研究的強勁投入以及企業對人工智慧技術的早期應用。成熟的數位經濟和密集的人工智慧技術提供者持續推動著成長。 AIGC 工具與企業軟體堆疊的整合,正在推動媒體、教育、廣告和商業服務等領域的廣泛採用。

AIGC 的格局受競爭環境的影響,一些關鍵公司正在開發支援可擴展內容生成的工具。這些公司專注於提昇平台效能、增強用戶體驗,並支援企業級應用程式,以滿足日益成長的市場需求。隨著科技的成熟,AIGC 有望成為全球數位經濟的基礎要素,影響內容的構思、創作和消費方式。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 全球的
    • 地區/國家
  • 基礎估算與計算
    • 基準年計算
    • 市場評估的主要趨勢
  • 初步研究和驗證
    • 主要來源
  • 預測模型
  • 研究假設和局限性

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
    • 供應商格局
    • 利潤率分析
    • 成本結構
    • 每個階段的增值
    • 影響價值鏈的因素
    • 中斷
  • 產業衝擊力
    • 成長動力
      • 數位內容需求爆炸性成長
      • AIGC 與商業應用程式的整合
      • 基礎模型的進步
      • 需要在地化和個性化
      • 創作者經濟的崛起
      • 基於雲端的交付模式
    • 產業陷阱與挑戰
      • 智慧財產權和版權風險
      • 非技術專業人士的認知度有限
      • 高運算資源需求
      • 缺乏內容真實性檢測
    • 市場機會
      • 產業特定的 AIGC 工具
      • 合成資料生成
      • 多語言和低資源模型開發
      • 人工智慧與人類協作的工作流程
  • 成長潛力分析
  • 監管格局
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 波特的分析
  • PESTEL分析
  • 科技與創新格局
    • 當前的技術趨勢
    • 新興技術
  • 成本細分分析
    • 軟體開發和授權成本
    • 部署和整合成本
    • 維護和支援成本
    • 網路安全與合規成本
    • 培訓和變更管理成本
  • 專利分析
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物的策略
    • 生產中的能源效率
    • 環保舉措
    • 碳足跡考量
  • 用例
  • 最佳情況

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • MEA
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 夥伴關係與合作
    • 新產品發布
    • 擴張計劃和資金

第5章:市場估計與預測:按組件,2021 - 2034 年

  • 主要趨勢
  • 解決方案
    • 文字產生工具
    • 影像生成平台
    • 影片和動畫生成器
    • 音訊和語音合成工具
    • 程式碼生成平台
  • 服務
    • 諮詢與策略
    • 整合與部署
    • 支援與維護
    • 客製化內容開發服務

第6章:市場估計與預測:依部署模式,2021 - 2034 年

  • 主要趨勢
  • 本地
  • 基於雲端

第7章:市場估計與預測:依技術分類,2021 - 2034 年

  • 主要趨勢
  • 自然語言處理(NLP)
  • 生成對抗網路(GAN)
  • 變壓器模型
  • 文字到圖像模型
  • 文字轉影片/3D
  • 文字轉語音 (TTS)
  • 語音轉文字 (STT)

第8章:市場估計與預測:依內容,2021 - 2034 年

  • 主要趨勢
  • 文字內容
    • 部落格和文章
    • 行銷文案(廣告、電子郵件)
    • 劇本和對話
    • 產品描述
  • 圖像內容
    • 數位藝術和插圖
    • 產品視覺效果
    • 行銷和社群媒體圖形
  • 影片內容
    • 解釋影片
    • 虛擬主持人
    • 合成演員/化身
  • 音訊內容
    • 畫外音
    • podcast
    • 有聲書
  • 程式碼內容
    • Web 開發腳本
    • 遊戲開發程式碼
    • 自動化腳本

第9章:市場估計與預測:依企業規模,2021-2034

  • 主要趨勢
  • 小型企業
  • 中型企業
  • 大型企業

第 10 章:市場估計與預測:按應用,2021 年至 2034 年

  • 主要趨勢
  • 行銷與廣告
  • 媒體和娛樂
  • 電子商務與零售
  • 教育與培訓
  • 客戶服務和虛擬協助
  • 軟體和遊戲開發
  • 其他

第 11 章:市場估計與預測:按地區,2021 年至 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 北歐人
    • 俄羅斯
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 印尼
    • 菲律賓
    • 新加坡
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 哥倫比亞
  • MEA
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第12章:公司簡介

  • Adobe
  • Alibaba Cloud
  • Amazon Web Services (AWS)
  • Anthropic
  • Baidu
  • Canva
  • Copy.ai
  • Descript
  • Google DeepMind
  • IBM
  • Jasper AI
  • Meta (Facebook AI)
  • Microsoft
  • NVIDIA
  • OpenAI
  • Pika Labs
  • Rephrase.ai
  • Runway
  • Stability AI
  • Synthesia
簡介目錄
Product Code: 14385

The Global Artificial Intelligence Generated Content Market was valued at USD 27 billion in 2024 and is estimated to grow at a CAGR of 11.6% to reach USD 71.6 billion by 2034. Traditional content creation, once a labor-intensive task, is now transforming into a streamlined, automated process powered by advanced AI technologies. As AI models become more sophisticated, content production is no longer confined to niche creative teams-it is becoming a core enterprise function. Organizations across sectors are prioritizing the development of AI-literate teams that can effectively navigate prompt engineering, ethical content use, and workflow optimization. This trend is turning AIGC upskilling into a critical element of digital transformation strategies.

Artificial Intelligence Generated Content (AIGC) Market - IMG1

Market expansion is being further fueled by a growing focus on skill development through collaborations between public agencies and private sector innovators. Various institutions are working together to create structured learning frameworks and credentialing systems to prepare the workforce for the demands of AI-driven content creation. Simultaneously, AIGC solution providers are integrating training modules into their platforms, ensuring users-from creatives to enterprise professionals-have access to scalable education resources. These efforts are accelerating adoption across industries ranging from marketing and entertainment to education and e-commerce.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$27 Billion
Forecast Value$71.6 Billion
CAGR11.6%

The market is segmented by components into solutions and services. In 2024, solutions represented the largest share, accounting for nearly 68% of total revenue. This segment is expected to grow at a CAGR of over 12% between 2025 and 2034. AIGC solutions include AI-based platforms that generate text, images, videos, audio, and even code, providing businesses with tools for dynamic content development. These technologies support automation, real-time personalization, and creative agility, which are crucial in industries that rely on frequent content updates and brand engagement. Businesses are increasingly relying on these platforms to streamline marketing campaigns, enhance customer communication, and build immersive digital experiences.

By deployment, the AIGC market is categorized into cloud-based and on-premises models. Cloud-based solutions led the market with a 64% share in 2024 and are anticipated to register a CAGR of more than 13% through the forecast period. The preference for cloud-based tools is driven by their scalability, ease of integration, and real-time accessibility. Cloud infrastructure allows users to generate content via APIs and software-as-a-service (SaaS) models, promoting faster iterations and continuous workflow improvements. These tools eliminate infrastructure constraints and allow businesses to expand creative output across multiple platforms, making them especially popular in dynamic sectors like digital marketing, education, and e-commerce.

Based on technology, the market is segmented into several key innovations, including natural language processing (NLP), generative adversarial networks (GANs), transformer models, text-to-image models, text-to-video/3D, and speech-to-text or text-to-speech systems. Among these, transformer models held the dominant position in 2024. These models, known for their large-scale processing capabilities, are the foundation of many leading AIGC applications. Their ability to understand context, generate human-like responses, and synthesize information across formats makes them essential to powering multi-modal AI platforms. As transformer architectures continue to advance, they are enabling increasingly nuanced and adaptable content creation systems.

Regionally, the United States emerged as the leading market within North America, commanding around 82% of the regional share and generating approximately USD 7.6 billion in revenue in 2024. The country's dominance is driven by its strong innovation ecosystem, robust investment in AI research, and early enterprise adoption of AI technologies. A well-established digital economy and a dense concentration of AI technology providers continue to propel growth. The integration of AIGC tools into enterprise software stacks is driving high adoption across sectors such as media, education, advertising, and business services.

The AIGC landscape is shaped by a competitive environment, with key companies developing tools that support scalable content generation. These companies are focused on improving platform performance, enhancing user experiences, and supporting enterprise-grade applications to meet growing market demand. As the technology matures, AIGC is expected to become a foundational element of the global digital economy, influencing how content is imagined, created, and consumed.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Component
    • 2.2.3 Deployment Mode
    • 2.2.4 Technology
    • 2.2.5 Content
    • 2.2.6 Enterprise Size
    • 2.2.7 Application
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Explosive growth in digital content demand
      • 3.2.1.2 Integration of AIGC into business apps
      • 3.2.1.3 Advancements in foundation models
      • 3.2.1.4 Need for localization & personalization
      • 3.2.1.5 Rise of the creator economy
      • 3.2.1.6 Cloud-based delivery models
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Intellectual property & copyright risks
      • 3.2.2.2 Limited awareness among non-tech professionals
      • 3.2.2.3 High computing resource requirements
      • 3.2.2.4 Lack of content authenticity detection
    • 3.2.3 Market opportunities
      • 3.2.3.1 Industry-specific AIGC tools
      • 3.2.3.2 Synthetic data generation
      • 3.2.3.3 Multilingual and low-resource model development
      • 3.2.3.4 Collaborative AI-human workflows
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter’s analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and Innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Cost breakdown analysis
    • 3.8.1 Software development & licensing cost
    • 3.8.2 Deployment & integration cost
    • 3.8.3 Maintenance & support cost
    • 3.8.4 Cybersecurity & compliance cost
    • 3.8.5 Training & change management cost
  • 3.9 Patent analysis
  • 3.10 Sustainability and environmental aspects
    • 3.10.1 Sustainable practices
    • 3.10.2 Waste reduction strategies
    • 3.10.3 Energy efficiency in production
    • 3.10.4 Eco-friendly Initiatives
    • 3.10.5 Carbon footprint considerations
  • 3.11 Use cases
  • 3.12 Best-case scenario

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans and funding

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 ($Bn)

  • 5.1 Key trends
  • 5.2 Solutions
    • 5.2.1 Text generation tools
    • 5.2.2 Image generation platforms
    • 5.2.3 Video and animation generators
    • 5.2.4 Audio and speech synthesis tools
    • 5.2.5 Code generation platforms
  • 5.3 Services
    • 5.3.1 Consulting & strategy
    • 5.3.2 Integration & deployment
    • 5.3.3 Support & maintenance
    • 5.3.4 Custom content development services

Chapter 6 Market Estimates & Forecast, By Deployment Mode, 2021 - 2034 ($Bn)

  • 6.1 Key trends
  • 6.2 On-premises
  • 6.3 Cloud-based

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2034 ($Bn)

  • 7.1 Key trends
  • 7.2 Natural Language Processing (NLP)
  • 7.3 Generative Adversarial Networks (GAN)
  • 7.4 Transformer models
  • 7.5 Text-to-image models
  • 7.6 Text-to-video/3D
  • 7.7 Text-to-Speech (TTS)
  • 7.8 Speech-to-Text (STT)

Chapter 8 Market Estimates & Forecast, By Content, 2021 - 2034 ($Bn)

  • 8.1 Key trends
  • 8.2 Text content
    • 8.2.1 Blogs and articles
    • 8.2.2 Marketing copy (ads, emails)
    • 8.2.3 Scripts and dialogues
    • 8.2.4 Product descriptions
  • 8.3 Image Content
    • 8.3.1 Digital art & illustrations
    • 8.3.2 Product visuals
    • 8.3.3 Marketing & social media graphics
  • 8.4 Video Content
    • 8.4.1 Explainer videos
    • 8.4.2 Virtual presenters
    • 8.4.3 Synthetic actors/avatars
  • 8.5 Audio Content
    • 8.5.1 Voiceovers
    • 8.5.2 Podcasts
    • 8.5.3 Audiobooks
  • 8.6 Code Content
    • 8.6.1 Web development scripts
    • 8.6.2 Game development code
    • 8.6.3 Automation scripts

Chapter 9 Market Estimates & Forecast, By Enterprise Size, 2021- 2034 ($Bn)

  • 9.1 Key trends
  • 9.2 Small enterprises
  • 9.3 Medium enterprises
  • 9.4 Large enterprises

Chapter 10 Market Estimates & Forecast, By Application, 2021- 2034 ($Bn)

  • 10.1 Key trends
  • 10.2 Marketing & advertising
  • 10.3 Media & entertainment
  • 10.4 E-commerce & retail
  • 10.5 Education & training
  • 10.6 Customer service & virtual assistance
  • 10.7 Software & game development
  • 10.8 Others

Chapter 11 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 U.S.
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 France
    • 11.3.4 Italy
    • 11.3.5 Spain
    • 11.3.6 Nordics
    • 11.3.7 Russia
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 Australia
    • 11.4.5 South Korea
    • 11.4.6 Indonesia
    • 11.4.7 Philippines
    • 11.4.8 Singapore
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Argentina
    • 11.5.4 Colombia
  • 11.6 MEA
    • 11.6.1 South Africa
    • 11.6.2 Saudi Arabia
    • 11.6.3 UAE

Chapter 12 Company Profiles

  • 12.1 Adobe
  • 12.2 Alibaba Cloud
  • 12.3 Amazon Web Services (AWS)
  • 12.4 Anthropic
  • 12.5 Baidu
  • 12.6 Canva
  • 12.7 Copy.ai
  • 12.8 Descript
  • 12.9 Google DeepMind
  • 12.10 IBM
  • 12.11 Jasper AI
  • 12.12 Meta (Facebook AI)
  • 12.13 Microsoft
  • 12.14 NVIDIA
  • 12.15 OpenAI
  • 12.16 Pika Labs
  • 12.17 Rephrase.ai
  • 12.18 Runway
  • 12.19 Stability AI
  • 12.20 Synthesia