封面
市場調查報告書
商品編碼
1766197

汽車片上雷達技術市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

Automotive Radar-on-Chip Technology Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 160 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球汽車片上雷達技術市場價值為 17 億美元,預計到 2034 年將以 15.6% 的複合年成長率成長至 69 億美元。隨著原始設備製造商 (OEM) 將自動駕駛技術從 2 級以上提升到 4 級,對複雜且可擴展的感知系統的需求持續成長。片上雷達技術將天線、收發器和訊號處理組件整合到單一晶片上,與傳統雷達模組相比,可顯著降低整體系統成本、最小化尺寸並簡化複雜性。這種整合對於節省空間和功耗至關重要的電動和緊湊型汽車尤其有利。隨著車隊營運商和汽車產業加大對自動駕駛能力的推動,雷達感測器在各個車輛領域的重要性日益增加,因此將片上雷達提升為戰略重點。

汽車片上雷達技術市場 - IMG1

微波毫米波 (mmWave) CMOS 和 RF-CMOS 技術的進步加速了晶片雷達系統的發展。這些改進使得所有工作在 76 至 81 GHz 頻率範圍內的雷達組件能夠整合到單一晶片中,從而減小尺寸、降低功耗並降低成本。片上雷達晶片的經濟量產和高良率進一步支持了其在汽車製造業的應用。此外,現代片上雷達晶片整合了人工智慧 (AI) 和機器視覺處理器,可增強物體偵測和分類能力,從而實現軟體定義、可更新的雷達系統,從而提高適應性並延長產品壽命。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 17億美元
預測值 69億美元
複合年成長率 15.6%

單晶片系統級晶片 (SoC) 解決方案引領市場,2024 年市場規模達 9 億美元。這些單晶片 SoC 將雷達功能(包括射頻收發器和訊號處理)與邏輯電路整合在一個晶片上,從而提高了能源效率,降低了製造成本,並簡化了車輛整合。隨著原始設備製造商 (OEM) 專注於車隊電氣化和數位化,這種緊湊的設計變得越來越重要。對於高級運算需求或客製化高級駕駛輔助系統 (ADAS) 中的冗餘,多晶片模組仍然是首選。同時,整合雷達陣列在高清雷達應用中越來越受歡迎。

乘用車市場佔據主導地位,2024 年市場規模達 11 億美元。 SUV 是乘用車中成長最快的子類別,這得益於消費者對搭載 ADAS 功能的大型車款的偏好。片上雷達解決方案能夠經濟高效地平衡高級和中級安全功能,尤其適用於風險降低至關重要的轎車和入門級掀背車。

2024年,亞太地區汽車片上雷達技術市場佔了43%的市場。強勁的汽車產量、ADAS(高級駕駛輔助系統)的普及率不斷提高以及強力的政府舉措推動了該地區的成長。高產量使該地區的原始設備製造商在採用經濟高效的雷達技術方面具有優勢。中國等國大力推動L3+自動駕駛,加速了雷達在電動和智慧汽車的應用。國家級計畫透過產業領袖與科技公司之間的合作,支持國內片上雷達的開發。日本和韓國專注於縮小晶片尺寸和功耗,並將多晶片系統整合到單晶片解決方案中。新興的城市空中交通雷達SoC和多模態ADAS感測器正在由地區汽車製造商開發和整合。

全球汽車片上雷達技術市場的主要參與者包括法雷奧、德州儀器、羅伯特博世、英飛凌科技、大陸集團、電裝株式會社、恩智浦半導體、採埃孚和 Arbe Robotics。為鞏固市場地位,汽車片上雷達領域的公司優先進行研發,致力於在更小的尺寸內增強整合度、能源效率和運算能力。與汽車原始設備製造商和技術公司的合作可以為不斷發展的自動駕駛需求提供客製化解決方案。對支援人工智慧的雷達系統和軟體可更新平台的策略性投資提高了產品的適應性和使用壽命。擴大製造能力以提高晶片產量和降低成本仍然是重點,遵守全球汽車標準也是如此。各公司也利用合作夥伴關係和合資企業來加速創新和擴大生產,同時透過在地化的生產和分銷網路瞄準新興市場。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 地區
    • 國家
  • 基礎估算與計算
    • 基準年計算
    • 市場評估的主要趨勢
  • 初步研究和驗證
    • 主要來源
  • 預測模型
  • 研究假設和局限性

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
    • 供應商格局
    • 利潤率
    • 成本結構
    • 每個階段的增值
    • 影響價值鏈的因素
    • 中斷
  • 產業衝擊力
    • 成長動力
      • 安全法規和 NCAP 要求
      • ADAS 和自動駕駛需求不斷增加
      • 與人工智慧和感測器融合的整合
      • 政府資助的流動計劃
    • 產業陷阱與挑戰
      • 複雜的校準和驗證
      • 研發和晶片開發成本高
    • 市場機會
      • 3級以上自動駕駛
      • 新興市場滲透
      • 具有4D成像功能的下一代雷達
  • 成長潛力分析
  • 監管格局
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 波特的分析
  • PESTEL分析
  • 技術和創新格局
    • 當前的技術趨勢
    • 新興技術
  • 成本細分分析
  • 專利分析
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物的策略
    • 生產中的能源效率
    • 環保舉措
    • 碳足跡考量
  • 消費者行為分析
    • OEM與售後市場偏好
    • 成本效益決策因素
  • 售後市場趨勢分析
    • 雷達系統維護和保修
    • 晶片更換週期
    • 一級供應商與OEM車型的成本與效益對比

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 夥伴關係與合作
    • 新產品發布
    • 擴張計劃和資金

第5章:市場估計與預測:按頻段,2021 - 2034 年

  • 主要趨勢
  • 24 GHz
  • 77 GHz
  • 79 GHz

第6章:市場估計與預測:依範圍,2021 - 2034 年

  • 主要趨勢
  • 短程雷達(SRR)
  • 中程雷達(MRR)
  • 遠程雷達(LRR)

第7章:市場估計與預測:依技術分類,2021 - 2034 年

  • 主要趨勢
  • 單晶片SoC
  • 多晶片模組
  • 綜合雷達陣列

第8章:市場估計與預測:依車型,2021 - 2034 年

  • 主要趨勢
  • 搭乘用車
    • 掀背車
    • 轎車
    • 越野車
  • 商用車
    • 輕型商用車(LCV)
    • 中型商用車(MCV)
    • 重型商用車(HCV)

第9章:市場估計與預測:依銷售管道,2021 - 2034 年

  • 主要趨勢
  • OEM
  • 售後市場

第 10 章:市場估計與預測:按應用,2021 年至 2034 年

  • 主要趨勢
  • 自適應巡航控制 (ACC)
  • 盲點偵測(BSD)
  • 前方碰撞警示 (FCW)
  • 自動緊急煞車(AEB)
  • 高級停車輔助
  • 自動駕駛汽車的角雷達
  • 其他

第 11 章:市場估計與預測:按地區,2021 年至 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
    • 北歐人
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲
    • 東南亞
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯
    • 南非

第12章:公司簡介

  • Analog Devices
  • Aptiv
  • Arbe Robotics
  • Artsys360
  • Autoliv
  • Calterah Semiconductor Technology
  • Continental
  • Delphi Technologies
  • Denso
  • HELLA GmbH
  • Infineon Technologies
  • NXP Semiconductors
  • Renesas Electronics
  • Robert Bosch
  • Steradian Semiconductors
  • Texas Instruments
  • Uhnder
  • Valeo
  • Veoneer
  • ZF Friedrichshafen
簡介目錄
Product Code: 14107

The Global Automotive Radar-on-Chip Technology Market was valued at USD 1.7 billion in 2024 and is estimated to grow at a CAGR of 15.6% to reach USD 6.9 billion by 2034. As original equipment manufacturers (OEMs) push advancements from Level 2+ to Level 4 autonomy, the demand for sophisticated and scalable perception systems continues to rise. Radar-on-chip technology integrates antennas, transceivers, and signal processing components onto a single chip, significantly lowering overall system costs, minimizing size, and simplifying complexity compared to traditional radar modules. This integration is particularly beneficial for electric and compact vehicles, where saving space and power is critical. With fleet operators and the automotive industry ramping up their push for autonomous driving capabilities, radar sensors' importance grows across vehicle segments, elevating RoC to a strategic priority.

Automotive Radar-on-Chip Technology Market - IMG1

Advancements in microwave millimeter-wave (mmWave) CMOS and RF-CMOS technologies have accelerated the development of radar-on-chip systems. These improvements allow all radar components operating in the 76 to 81 GHz frequency range to be integrated into a single die, reducing size, power consumption, and costs. Economical mass production of RoC chips with high yields further supports adoption in automotive manufacturing. Moreover, modern RoC chips incorporate artificial intelligence (AI) and machine vision processors for enhanced object detection and classification, resulting in software-defined, updatable radar systems that improve adaptability and extend product life.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$1.7 Billion
Forecast Value$6.9 Billion
CAGR15.6%

Single-chip system-on-chip (SoC) solutions led the market, generating USD 900 million in 2024. These single-chip SoCs combine radar functions-including RF transceivers and signal processing-with logic circuitry on one chip, enhancing power efficiency, reducing manufacturing costs, and simplifying vehicle integration. This compact design becomes increasingly important as OEMs focus on fleet electrification and digitalization. For advanced computing needs or redundancy in customized advanced driver-assistance systems (ADAS), multi-chip modules remain preferred. Meanwhile, integrated radar arrays are gaining traction in high-definition radar applications.

The passenger vehicle segment dominated the market with USD 1.1 billion in 2024. SUVs are the fastest-growing subcategory within passenger vehicles, driven by consumer preference for larger models that incorporate ADAS features. Radar-on-chip solutions balance advanced and mid-level safety functionalities cost-effectively, especially for sedans and entry-level hatchbacks where risk mitigation is critical.

Asia Pacific Automotive Radar-on-Chip Technology Market captured a 43% share in 2024. Growth here is fueled by strong vehicle production, increasing penetration of ADAS, and robust government initiatives. High manufacturing volumes give regional OEMs advantages in adopting cost-efficient radar technologies. The push toward Level 3+ autonomous driving in countries like China has accelerated radar adoption in electric and intelligent vehicles. National programs support domestic radar-on-chip development through partnerships among industry leaders and tech firms. Japan and South Korea focus on reducing chip size and power consumption, and integrating multi-chip systems into single-chip solutions. Emerging urban air mobility radar SoCs and multi-modal ADAS sensors are being developed and integrated by regional automotive manufacturers.

Key players in the Global Automotive Radar-on-Chip Technology Market include Valeo, Texas Instruments, Robert Bosch, Infineon Technologies, Continental, Denso Corporation, NXP Semiconductors, ZF Friedrichshafen, and Arbe Robotics. To reinforce their market presence, companies in the automotive radar-on-chip space are prioritizing research and development focused on enhancing integration, power efficiency, and computational capabilities within smaller form factors. Collaboration with automotive OEMs and technology firms enables tailored solutions for evolving autonomous driving requirements. Strategic investments in AI-enabled radar systems and software-updatable platforms boost product adaptability and lifespan. Expanding manufacturing capabilities to improve chip yields and reduce costs remains a focus, as does compliance with global automotive standards. Firms are also leveraging partnerships and joint ventures to accelerate innovation and scale production while targeting emerging markets through localized production and distribution networks.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Region
    • 1.3.2 Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Frequency band
    • 2.2.3 Range
    • 2.2.4 Technology
    • 2.2.5 Vehicle
    • 2.2.6 Sales Channel
    • 2.2.7 Application
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Safety regulations and NCAP mandates
      • 3.2.1.2 Rising ADAS and autonomous demand
      • 3.2.1.3 Integration with AI and sensor fusion
      • 3.2.1.4 Government-funded mobility programs
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Complex calibration and validation
      • 3.2.2.2 High R&D and chip development costs
    • 3.2.3 Market opportunities
      • 3.2.3.1 Level 3+autonomy adoption
      • 3.2.3.2 Emerging markets penetration
      • 3.2.3.3 Next-gen radar with 4D imaging
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Cost breakdown analysis
  • 3.9 Patent analysis
  • 3.10 Sustainability and environmental aspects
    • 3.10.1 Sustainable practices
    • 3.10.2 Waste reduction strategies
    • 3.10.3 Energy efficiency in production
    • 3.10.4 Eco-friendly initiatives
    • 3.10.5 Carbon footprint considerations
  • 3.11 Consumer behavior analysis
    • 3.11.1 OEM vs aftermarket preferences
    • 3.11.2 Cost–performance decision factors
  • 3.12 Analysis of aftermarket trends
    • 3.12.1 Radar system maintenance & warranties
    • 3.12.2 Chip replacement cycles
    • 3.12.3 Cost vs benefit for Tier 1 vs OEM models

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East & Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Frequency Band, 2021 - 2034 ($Mn)

  • 5.1 Key trends
  • 5.2 24 GHz
  • 5.3 77 GHz
  • 5.4 79 GHz

Chapter 6 Market Estimates & Forecast, By Range, 2021 - 2034 ($Mn)

  • 6.1 Key trends
  • 6.2 Short-Range Radar (SRR)
  • 6.3 Medium-Range Radar (MRR)
  • 6.4 Long-Range Radar (LRR)

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2034 ($Mn)

  • 7.1 Key trends
  • 7.2 Single-chip SoC
  • 7.3 Multi-chip module
  • 7.4 Integrated radar arrays

Chapter 8 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($Mn)

  • 8.1 Key trends
  • 8.2 Passenger vehicle
    • 8.2.1 Hatchback
    • 8.2.2 Sedan
    • 8.2.3 SUV
  • 8.3 Commercial vehicle
    • 8.3.1 Light Commercial Vehicle (LCV)
    • 8.3.2 Medium Commercial Vehicle (MCV)
    • 8.3.3 Heavy Commercial Vehicles (HCV)

Chapter 9 Market Estimates & Forecast, By Sales Channel, 2021 - 2034 ($Mn)

  • 9.1 Key trends
  • 9.2 OEM
  • 9.3 Aftermarket

Chapter 10 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn)

  • 10.1 Key trends
  • 10.2 Adaptive Cruise Control (ACC)
  • 10.3 Blind Spot Detection (BSD)
  • 10.4 Forward Collision Warning (FCW)
  • 10.5 Automatic Emergency Braking (AEB)
  • 10.6 Advanced parking assist
  • 10.7 Corner radar for autonomous vehicles
  • 10.8 Others

Chapter 11 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn, Units)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 U.S.
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 UK
    • 11.3.2 Germany
    • 11.3.3 France
    • 11.3.4 Italy
    • 11.3.5 Spain
    • 11.3.6 Russia
    • 11.3.7 Nordics
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 South Korea
    • 11.4.5 Australia
    • 11.4.6 Southeast Asia
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Argentina
  • 11.6 MEA
    • 11.6.1 UAE
    • 11.6.2 Saudi Arabia
    • 11.6.3 South Africa

Chapter 12 Company Profiles

  • 12.1 Analog Devices
  • 12.2 Aptiv
  • 12.3 Arbe Robotics
  • 12.4 Artsys360
  • 12.5 Autoliv
  • 12.6 Calterah Semiconductor Technology
  • 12.7 Continental
  • 12.8 Delphi Technologies
  • 12.9 Denso
  • 12.10 HELLA GmbH
  • 12.11 Infineon Technologies
  • 12.12 NXP Semiconductors
  • 12.13 Renesas Electronics
  • 12.14 Robert Bosch
  • 12.15 Steradian Semiconductors
  • 12.16 Texas Instruments
  • 12.17 Uhnder
  • 12.18 Valeo
  • 12.19 Veoneer
  • 12.20 ZF Friedrichshafen