封面
市場調查報告書
商品編碼
1755278

矽陽極市場機會、成長動力、產業趨勢分析及2025-2034年預測

Silicone Anodes Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024年,全球矽陽極市場規模達49億美元,預計年複合成長率將達7.1%,到2034年將達97億美元。這得歸功於高能量鋰離子電池的加速轉變,這些電池對能量密度和性能的要求越來越高。矽基陽極是一項重大進步,其容量可達約3,600 mAh/g,幾乎是傳統石墨(最大容量為372 mAh/g)的十倍。在國家製定的下一代電池性能目標的支持下,電動車需求的不斷成長推動著電池技術向更高的能量門檻邁進。政府主導的措施、電池生產成本的下降以及嚴格的排放目標,為矽陽極的發展創造了強勁動力。

矽陽極市場 - IMG1

旨在清潔能源轉型的監管計劃,例如美國的《通膨削減法案》和歐盟的氣候政策,支持了該領域的生產和創新。此外,由公共機構支持的研究正致力於透過探索複合材料和先進的電極設計來解決矽的技術限制,例如膨脹和分解。先進材料科學、政策支援和終端用戶需求的融合,為矽基陽極在汽車、消費性電子和儲能領域的商用電池系統中的快速應用創造了有利的前景。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 49億美元
預測值 97億美元
複合年成長率 7.1%

矽碳複合材料憑藉其增強的機械耐久性和循環效率,在2024年佔據了30%的市場。這些材料有助於緩解充電過程中矽體積膨脹這一常見挑戰,同時保持強大的導電性和結構彈性。碳基質提供了關鍵的緩衝作用,確保在電動車應用所需的高負載循環下保持可靠的性能。這種混合材料已成為可擴展商用級矽陽極的首選。

同時,由於電動車、攜帶式電子產品和電網儲能等產業佔據市場主導地位,鋰離子電池在2024年的市佔率將達到58.3%。矽陽極的優點在於其與現有鋰離子電池系統的兼容性,無需進行大規模改造即可實現無縫整合。這有助於加速矽增強型鋰離子電池的商業化和量產。這類電池具有顯著的優勢,例如更長的續航里程、更長的設備壽命和更高的儲能密度。

2024年,電動車引領所有應用領域,成為矽陽極需求的主要驅動力。向純電動平台的轉變需要先進的電池化學技術,以提供更高的電池密度和快速充電能力。矽化合物因其卓越的容量和對續航里程的貢獻而至關重要。汽車製造商正在積極探索與材料供應商的合作,以加速將矽陽極整合到下一代電動車電池系統中。

2024年,美國矽陽極市場產值達10億美元,並持續在北美地區維持強勁成長動能。在聯邦政府的大力支持下,國家政策推動了電動車電池技術的國內生產和創新。 《兩黨基礎設施法》等立法鼓勵對先進能源系統的投資,而消費者對快速充電、長續航電動車日益成長的需求,則推動著原始設備製造商(OEM)和電池製造商採用矽基材料。美國強大的研發生態系統,加上汽車製造商和電池開發商的積極參與,正在推動材料科學、商業應用和供應鏈整合的快速發展。

矽陽極市場的主要參與者包括安普瑞斯科技 (Amprius Technologies)、瓦克化學 (Wacker Chemie)、Enovix 和 Sila Nanotechnologies。為了鞏固市場地位,矽陽極產業的公司專注於長期合作、研發規模化和垂直整合。關鍵策略包括開發下一代複合材料以應對矽的擴張挑戰,並與電動車和電池製造商結盟以簡化商業化流程。一些公司投資於專有的奈米結構設計和可擴展的製造技術,以確保產品的穩定性和成本效益。此外,一些公司正在利用公共資金和監管支援來加速創新管道的建設。

目錄

第1章:方法論與範圍

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
    • 影響價值鏈的因素
    • 利潤率分析
    • 中斷
    • 未來展望
    • 製造商
    • 經銷商
  • 川普政府關稅
    • 對貿易的影響
      • 貿易量中斷
      • 報復措施
    • 對產業的影響
      • 供給側影響(原料)
        • 主要材料價格波動
        • 供應鏈重組
        • 生產成本影響
      • 需求面影響(售價)
        • 價格傳導至終端市場
        • 市佔率動態
        • 消費者反應模式
    • 受影響的主要公司
    • 策略產業反應
      • 供應鏈重組
      • 定價和產品策略
      • 政策參與
    • 展望與未來考慮
  • 貿易統計資料(HS 編碼) 註:以上貿易統計僅提供主要國家。
    • 主要出口國
    • 主要進口國
  • 衝擊力
    • 市場促進因素
      • 不斷成長的電動車市場
      • 高能量密度電池的需求不斷增加
      • 電池成本下降
      • 政府措施和法規
      • 矽負極材料的技術進步
    • 市場限制
      • 矽陽極實施中的技術挑戰
      • 生產成本高
      • 來自替代陽極材料的競爭
      • 供應鏈約束
      • 性能和耐用性問題
    • 市場機會
      • 融入下一代電動車
      • 消費性電子領域的新興應用
      • 儲能系統
      • 航太和國防應用
      • 矽陽極-固態電池協同作用
    • 市場挑戰
      • 將生產規模擴大到商業水平
      • 實現始終如一的質量
      • 平衡性能和成本
      • 與現有製造基礎設施整合
  • 監管框架和政府舉措
    • 電池安全標準
    • 運輸法規
    • 環境法規
    • 製造標準
    • 測試和認證要求
    • 區域監管差異
  • 成長潛力分析
  • 2021-2034年價格分析(美元/噸)
  • 矽陽極基礎知識
    • 矽陽極技術概述
      • 鋰離子電池工作原理
      • 矽作為陽極材料
      • 理論容量和能量密度
      • 與石墨陽極的比較
    • 技術挑戰與解決方案
      • 卷擴展問題
      • 固體電解質界面相(sei)的形成
      • 循環壽命限制
      • 電導率挑戰
      • 創新設計方法
    • 績效指標與評估
      • 特定容量
      • 騎乘穩定性
      • 倍能力
      • 庫侖效率
      • 溫度性能
      • 標準化測試協議
  • 材料科學與工程
    • 矽材料形態
      • 矽奈米粒子
      • 矽奈米線
      • 矽奈米管
      • 多孔矽結構
      • 矽薄膜
    • 矽碳複合材料
      • 核殼結構
      • 矽石墨複合材料
      • 矽碳奈米管複合材料
      • 矽-石墨烯複合材料
      • 其他複合架構
    • 氧化矽基材料
      • 一氧化矽(Sio)
      • 二氧化矽(Sio2)
      • Siox複合材料
      • 性能特徵
    • 黏合劑和添加劑
      • 傳統黏合劑(PVDF)
      • 水溶性黏合劑(CMC、PAA)
      • 彈性黏合劑
      • 導電添加劑
      • 功能添加物
    • 電解質考慮因素
      • 電解質配方
      • sei穩定添加劑
      • 固態電解質
      • 矽-電解質界面工程
  • 製造和生產技術
    • 矽材料合成
      • 化學氣相沉積
      • 鎂熱還原
      • 電化學蝕刻
      • 球磨
      • 其他合成方法
    • 電極製造技術
      • 漿料製備
      • 塗層工藝
      • 壓延
      • 電極切割
      • 品質控制方法
    • 電池組裝過程
      • 軟包電池組件
      • 圓柱形電池組件
      • 方形電池組件
      • 形成和老化
    • 可伸縮性注意事項
      • 實驗室規模至中試生產
      • 大規模生產挑戰
      • 成本分析
      • 產量最佳化
      • 設備要求
    • 製造業創新
      • 乾電極加工
      • 積層製造
      • 卷對卷加工
      • 工業4.0整合
      • 新興製造方法
  • 矽陽極技術的最新創新
    • 新型矽奈米結構
    • 先進的複合材料設計
    • 黏合劑和電解質創新
    • 製造程序突破
    • 績效提升策略
  • 波特的分析
  • PESTEL分析

第4章:競爭格局

  • 介紹
  • 主要參與者的市佔率分析
  • 競爭基準測試
  • 戰略儀表板
  • 競爭定位矩陣
  • 主要參與者所採用的競爭策略
    • 併購
    • 合資企業和合作
    • 產品發布和創新
    • 擴張和投資策略

第5章:市場估計與預測:按材料,2021 - 2034 年

  • 主要趨勢
  • 矽奈米粒子
  • 矽奈米線/奈米管
  • 矽碳複合材料
  • 氧化矽/SiOx
  • 矽薄膜
  • 其他

第6章:市場估計與預測:按電池類型,2021 - 2034 年

  • 主要趨勢
  • 鋰離子電池
    • 圓柱形電池
    • 軟包電池
    • 方形電池
  • 鋰聚合物電池
  • 固態電池
  • 其他

第7章:市場估計與預測:按應用,2021 - 2034 年

  • 主要趨勢
  • 汽車
    • 純電動車
    • 插電式混合動力電動車
    • 油電混合車
    • 商用車
  • 消費性電子產品
    • 智慧型手機
    • 筆記型電腦和平板電腦
    • 穿戴式裝置
    • 其他
  • 儲能系統
    • 住宅
    • 商業的
    • 公用事業規模
    • 微電網和離網
  • 工業的
    • 電動工具
    • 物料搬運設備
    • 其他
  • 航太和國防
  • 其他

第8章:市場估計與預測:按地區,2021 - 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 亞太其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國
    • 中東和非洲其他地區

第9章:公司簡介

  • Advano
  • Amprius Technologies
  • BTR New Energy Material
  • Enevate Corporation
  • Enovix
  • Group14 Technologies
  • NanoGraf Corporation
  • Nexeon Limited
  • Ningbo Shanshan
  • OneD Battery Sciences
  • Shin-Etsu Chemical
  • Sila Nanotechnologies
  • Targray Technology International
  • Wacker Chemie
簡介目錄
Product Code: 13958

The Global Silicone Anodes Market was valued at USD 4.9 billion in 2024 and is estimated to grow at a CAGR of 7.1% to reach USD 9.7 billion by 2034, fueled by the accelerating shift toward high-energy lithium-ion batteries that demand improved energy density and performance. Silicon-based anodes are a major advancement, capable of delivering around 3,600 mAh/g-nearly ten times the capacity of conventional graphite, which maxes out at 372 mAh/g. The rising demand for electric vehicles pushes battery technologies toward higher energy thresholds, supported by national goals targeting next-generation battery performance. Government-led initiatives, declining battery production costs, and stringent emissions targets create strong momentum for silicon anode development.

Silicone Anodes Market - IMG1

Regulatory programs aimed at clean energy transition, such as the U.S. Inflation Reduction Act and the EU's climate policies, support production and innovation in this space. In addition, research backed by public agencies is focusing on resolving technical limitations of silicon, like expansion and degradation, by exploring composite materials and advanced electrode designs. The convergence of advanced materials science, policy backing, and end-user demand creates a favorable landscape for the rapid adoption of silicon-based anodes in commercial battery systems across automotive, consumer electronics, and energy storage sectors.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$4.9 Billion
Forecast Value$9.7 Billion
CAGR7.1%

Silicon-carbon composites captured a 30% share in 2024 due to their enhanced mechanical durability and cycling efficiency. These materials help mitigate the common challenge of silicon volume expansion during charging, while maintaining strong conductivity and structural resilience. The carbon matrix offers critical buffering, ensuring reliable performance under the heavy load cycles required by electric vehicle applications. This hybrid material has become the go-to option for scalable, commercial-grade silicon anodes.

Meanwhile, lithium-ion batteries accounted for a 58.3% share in 2024, as industries like EVs, portable electronics, and grid storage dominate the market. The advantage of silicon anodes lies in their compatibility with existing lithium-ion systems, allowing seamless integration without major retooling. This has helped accelerate the commercialization and mass production of silicon-enhanced lithium-ion batteries. These batteries offer significant benefits, such as extended driving range, greater device longevity, and enhanced energy storage density.

Electric vehicles led all application segments in 2024, establishing themselves as the primary driver of demand for silicon anodes. The shift toward fully electric platforms requires advanced battery chemistries that deliver higher density and fast charging capabilities. Silicon compounds are crucial here, given their superior capacity and contribution to extended range. Automotive manufacturers are actively exploring partnerships with material suppliers to accelerate the integration of silicon anodes into next-gen EV battery systems.

U.S. Silicone Anodes Market generated USD 1 billion in 2024 and continues to gain strength across North America. Backed by strong federal support, national policies promote domestic production and innovation in EV battery technology. Legislation such as the Bipartisan Infrastructure Law encourages investment in advanced energy systems, while growing consumer demand for fast-charging, long-range electric vehicles pushes OEMs and battery manufacturers to incorporate silicon-based materials. The country's robust R&D ecosystem, along with active engagement from automakers and battery developers, is driving rapid advancements in material science, commercial applications, and supply chain integration.

Key players operating in the Silicone Anodes Market include Amprius Technologies, Wacker Chemie, Enovix, and Sila Nanotechnologies. To reinforce their market position, companies in the silicone anodes industry focus on long-term collaborations, R&D scaling, and vertical integration. Key strategies include developing next-generation composites to address silicon's expansion challenges and forming alliances with EV and battery manufacturers to streamline commercialization. Some players invest in proprietary nanostructure designs and scalable manufacturing techniques to ensure product stability and cost efficiency. Additionally, firms are leveraging public funding and regulatory support to fast-track innovation pipelines.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021 - 2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Trump administration tariffs
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (raw materials)
        • 3.2.2.1.1 Price volatility in key materials
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact (selling price)
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
      • 3.2.4.1 Supply chain reconfiguration
      • 3.2.4.2 Pricing and product strategies
      • 3.2.4.3 Policy engagement
    • 3.2.5 Outlook and future considerations
  • 3.3 Trade statistics (HS Code) Note: the above trade statistics will be provided for key countries only.
    • 3.3.1 Major exporting countries
    • 3.3.2 Major importing countries
  • 3.4 Impact forces
    • 3.4.1 Market drivers
      • 3.4.1.1 Growing electric vehicle market
      • 3.4.1.2 Increasing demand for high-energy density batteries
      • 3.4.1.3 Declining battery costs
      • 3.4.1.4 Government initiatives and regulations
      • 3.4.1.5 Technological advancements in silicon anode materials
    • 3.4.2 Market restraints
      • 3.4.2.1 Technical challenges in silicon anode implementation
      • 3.4.2.2 High production costs
      • 3.4.2.3 Competition from alternative anode materials
      • 3.4.2.4 Supply chain constraints
      • 3.4.2.5 Performance and durability concerns
    • 3.4.3 Market opportunities
      • 3.4.3.1 Integration in next-generation EVs
      • 3.4.3.2 Emerging applications in consumer electronics
      • 3.4.3.3 Energy storage systems
      • 3.4.3.4 Aerospace and defense applications
      • 3.4.3.5 Silicon anode-solid state battery synergies
    • 3.4.4 Market challenges
      • 3.4.4.1 Scaling production to commercial levels
      • 3.4.4.2 Achieving consistent quality
      • 3.4.4.3 Balancing performance and cost
      • 3.4.4.4 Integration with existing manufacturing infrastructure
  • 3.5 Regulatory framework and government initiatives
    • 3.5.1 Battery safety standards
    • 3.5.2 Transportation regulations
    • 3.5.3 Environmental regulations
    • 3.5.4 Manufacturing standards
    • 3.5.5 Testing and certification requirements
    • 3.5.6 Regional regulatory variations
  • 3.6 Growth potential analysis
  • 3.7 Pricing analysis (USD/Tons) 2021-2034
  • 3.8 Fundamentals of silicon anodes
    • 3.8.1 Silicon anode technology overview
      • 3.8.1.1 Lithium-ion battery working principles
      • 3.8.1.2 Silicon as anode material
      • 3.8.1.3 Theoretical capacity and energy density
      • 3.8.1.4 Comparison with graphite anodes
    • 3.8.2 Technical challenges and solutions
      • 3.8.2.1 Volume expansion issues
      • 3.8.2.2 Solid electrolyte interphase (sei) formation
      • 3.8.2.3 Cycle life limitations
      • 3.8.2.4 Electrical conductivity challenges
      • 3.8.2.5 Innovative design approaches
    • 3.8.3 Performance metrics and evaluation
      • 3.8.3.1 Specific capacity
      • 3.8.3.2 Cycling stability
      • 3.8.3.3 Rate capability
      • 3.8.3.4 Coulombic efficiency
      • 3.8.3.5 Temperature performance
      • 3.8.3.6 Standardized testing protocols
  • 3.9 Materials science and engineering
    • 3.9.1 Silicon material forms
      • 3.9.1.1 Silicon nanoparticles
      • 3.9.1.2 Silicon nanowires
      • 3.9.1.3 Silicon nanotubes
      • 3.9.1.4 Porous silicon structures
      • 3.9.1.5 Silicon thin films
    • 3.9.2 Silicon-carbon composites
      • 3.9.2.1 Core-shell structures
      • 3.9.2.2 Silicon-graphite composites
      • 3.9.2.3 Silicon-carbon nanotubes composites
      • 3.9.2.4 Silicon-graphene composites
      • 3.9.2.5 Other composite architectures
    • 3.9.3 Silicon oxide-based materials
      • 3.9.3.1 Silicon monoxide (Sio)
      • 3.9.3.2 Silicon dioxide (Sio2)
      • 3.9.3.3 Siox composites
      • 3.9.3.4 Performance characteristics
    • 3.9.4 Binders and additives
      • 3.9.4.1 Conventional binders (PVDF)
      • 3.9.4.2 Water-soluble binders (CMC, PAA)
      • 3.9.4.3 Elastomeric binders
      • 3.9.4.4 Conductive additives
      • 3.9.4.5 Functional additives
    • 3.9.5 Electrolyte considerations
      • 3.9.5.1 Electrolyte formulations
      • 3.9.5.2 Additives for sei stabilization
      • 3.9.5.3 Solid-state electrolytes
      • 3.9.5.4 Silicon-electrolyte interface engineering
  • 3.10 Manufacturing and production technologies
    • 3.10.1 Silicon material synthesis
      • 3.10.1.1 Chemical vapor deposition
      • 3.10.1.2 Magnesiothermic reduction
      • 3.10.1.3 Electrochemical etching
      • 3.10.1.4 Ball milling
      • 3.10.1.5 Other synthesis methods
    • 3.10.2 Electrode fabrication techniques
      • 3.10.2.1 Slurry preparation
      • 3.10.2.2 Coating processes
      • 3.10.2.3 Calendering
      • 3.10.2.4 Electrode cutting
      • 3.10.2.5 Quality control methods
    • 3.10.3 Cell assembly processes
      • 3.10.3.1 Pouch cell assembly
      • 3.10.3.2 Cylindrical cell assembly
      • 3.10.3.3 Prismatic cell assembly
      • 3.10.3.4 Formation and aging
    • 3.10.4 Scalability considerations
      • 3.10.4.1 Lab-scale to pilot production
      • 3.10.4.2 Mass production challenges
      • 3.10.4.3 Cost analysis
      • 3.10.4.4 Yield optimization
      • 3.10.4.5 Equipment requirements
    • 3.10.5 Manufacturing innovations
      • 3.10.5.1 Dry electrode processing
      • 3.10.5.2 Additive manufacturing
      • 3.10.5.3 Roll-to-roll processing
      • 3.10.5.4 Industry 4.0 integration
      • 3.10.5.5 Emerging manufacturing approaches
  • 3.11 Recent innovations in silicon anode technology
    • 3.11.1 Novel silicon nanostructures
    • 3.11.2 Advanced composite designs
    • 3.11.3 Binder and electrolyte innovations
    • 3.11.4 Manufacturing process breakthroughs
    • 3.11.5 Performance enhancement strategies
  • 3.12 Porter's analysis
  • 3.13 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Market share analysis of key players
  • 4.3 Competitive benchmarking
  • 4.4 Strategic dashboard
  • 4.5 Competitive positioning matrix
  • 4.6 Competitive strategies adopted by key players
    • 4.6.1 Mergers and acquisitions
    • 4.6.2 Ventures and collaborations
    • 4.6.3 Product launches and innovations
    • 4.6.4 Expansion and investment strategies

Chapter 5 Market Estimates and Forecast, By Material, 2021 - 2034 (USD Billion) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Silicon nanoparticles
  • 5.3 Silicon nanowires/nanotubes
  • 5.4 Silicon-carbon composites
  • 5.5 Silicon oxide/SiOx
  • 5.6 Silicon thin films
  • 5.7 Others

Chapter 6 Market Estimates and Forecast, By Battery Type, 2021 - 2034 (USD Billion) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Lithium-ion batteries
    • 6.2.1 Cylindrical cells
    • 6.2.2 Pouch cells
    • 6.2.3 Prismatic cells
  • 6.3 Lithium-polymer batteries
  • 6.4 Solid-state batteries
  • 6.5 Others

Chapter 7 Market Estimates and Forecast, By Application, 2021 - 2034 (USD Billion) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Automotive
    • 7.2.1 Battery electric vehicles
    • 7.2.2 Plug-in hybrid electric vehicles
    • 7.2.3 Hybrid electric vehicles
    • 7.2.4 Commercial vehicles
  • 7.3 Consumer electronics
    • 7.3.1 Smartphones
    • 7.3.2 Laptops and tablets
    • 7.3.3 Wearable devices
    • 7.3.4 Others
  • 7.4 Energy storage systems
    • 7.4.1 Residential
    • 7.4.2 Commercial
    • 7.4.3 Utility-Scale
    • 7.4.4 Microgrid and off-grid
  • 7.5 Industrial
    • 7.5.1 Power tools
    • 7.5.2 Material handling equipment
    • 7.5.3 Others
  • 7.6 Aerospace and defense
  • 7.7 Others

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Billion) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
    • 8.5.4 Rest of Latin America
  • 8.6 Middle East and Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE
    • 8.6.4 Rest of Middle East and Africa

Chapter 9 Company Profiles

  • 9.1 Advano
  • 9.2 Amprius Technologies
  • 9.3 BTR New Energy Material
  • 9.4 Enevate Corporation
  • 9.5 Enovix
  • 9.6 Group14 Technologies
  • 9.7 NanoGraf Corporation
  • 9.8 Nexeon Limited
  • 9.9 Ningbo Shanshan
  • 9.10 OneD Battery Sciences
  • 9.11 Shin-Etsu Chemical
  • 9.12 Sila Nanotechnologies
  • 9.13 Targray Technology International
  • 9.14 Wacker Chemie