封面
市場調查報告書
商品編碼
1755265

海洋動態定位系統市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

Marine Dynamic Positioning System Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 180 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024年,全球船舶動態定位系統 (DPS) 市場規模達92億美元,預計到2034年將以12.6%的複合年成長率成長,達到293億美元。該市場正在快速擴張,預計未來將保持強勁成長,這主要得益於海上探勘和生產活動、海事研究以及專用海軍艦艇的增加。這些艦艇需要通用或專用的動態定位系統 (DPS) 來確保高精度的定位能力。控制系統、感測器和自動化技術的最新創新提高了DPS的性能和可靠性,使其成為現代海上作業不可或缺的工具。

船舶動態定位系統市場 - IMG1

此外,未來強大的動態定位系統的發展將在很大程度上依賴基於人工智慧的控制技術和預測性維護軟體。這些進步將降低營運風險,最佳化燃料消耗,並利用即時資料提高營運效率。由於對海上基礎設施和再生能源項目的大量投資,亞太地區正成為動態定位系統(DPS)的重要市場。該地區各國優先發展先進的海上能力,包括不依賴傳統錨泊方式的船舶。隨著技術和營運考量的不斷發展,在全球對海洋和水上作業安全和效率的重視的推動下,DPS市場有望大幅成長。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 92億美元
預測值 293億美元
複合年成長率 12.6%

2024年,控制系統佔據市場主導地位,佔據45%的佔有率,預計到2034年該領域將創造110億美元的市場價值。隨著海上作業日益複雜,控制系統也不斷發展,以滿足現代DPS日益成長的需求。這些系統已顯著改進,擁有增強的演算法、直覺的人機介面和自動化功能,使船舶即使在最具挑戰性的條件下也能保持穩定。

2024年,2級動力定位系統佔據了55%的市場。 2級動態定位系統廣泛應用於海上鑽井、海底施工和其他關鍵海洋環境,在這些環境中,維護系統完整性至關重要。這些系統以其運作可靠性、定位精度和應對極端作業條件的能力而聞名。 2級系統配備先進的控制功能和冗餘功能,即使在發生嚴重故障時也能繼續運作。其高可靠性和成本效益使其成為營運商的首選,因為它們提供強大的定位功能,而無需像3級系統那樣複雜且成本更高。

2024年,美國海洋動態定位系統(DPS)市場規模達20億美元。美國在該領域佔據主導地位,這得益於大量的海上石油和天然氣活動,尤其是在需要高精度以確保安全高效作業的地區。美國先進的海洋基礎設施和頂級海上服務提供者的存在進一步促進了不同產業對不同等級DPS的需求。除了支援石油和天然氣作業外,美國也越來越注重為海軍作業、離岸風電場等再生能源專案以及其他專業應用開發DPS解決方案。

全球船舶動態定位系統 (DPS) 產業的主要參與者包括 ABB、L3 Harris、勞斯萊斯、康斯伯格、Volvo遍達、Marine Technologies、瓦錫蘭、Xenta Systems 和 GE Vernova。為了鞏固市場地位,船舶動態定位系統產業的公司正專注於產品創新,投資人工智慧控制系統的研發,並增強預測性維護能力。透過整合尖端感測器、自動化技術和即時資料分析,這些公司正在提高其系統的性能和效率。此外,一些參與者正在擴展其產品範圍,以滿足對再生能源解決方案(例如離岸風電場)日益成長的需求。策略夥伴關係、收購和區域擴張也是增強市場佔有率和利用新成長機會的關鍵策略。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 全球的
    • 地區/國家
  • 基礎估算與計算
    • 基準年計算
    • 市場評估的主要趨勢
  • 初步研究和驗證
    • 主要來源
  • 預測模型
  • 研究假設和局限性

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
    • 供應商概況
    • 利潤率
    • 成本結構
    • 每個階段的增值
    • 影響價值鏈的因素
    • 中斷
  • 產業衝擊力
    • 成長動力
      • 海上安全需求不斷成長
      • 海上交通和全球貿易增加
      • 海軍和軍隊現代化
      • 海上能源探勘開發增加
    • 產業陷阱與挑戰
      • 技術複雜性與缺乏技術人員
      • 初始成本和維護成本高
    • 市場機會
  • 成長潛力分析
  • 監管格局
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 波特的分析
  • PESTEL分析
  • 技術和創新格局
    • 當前的技術趨勢
      • 先進感測器融合系統的整合
      • 使用冗餘和故障安全架構
      • 即時遠端監控和診斷
      • 基於人工智慧的動態控制演算法
    • 新興技術
      • 整合 DP 的自主船舶導航
      • 用於DP仿真的數位孿生技術
      • 混合動力整合和綠色DP系統
      • DP日誌資料完整性的區塊鏈
  • 價格趨勢
    • 按地區
    • 按設備
  • 成本細分分析
  • 專利分析
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物的策略
    • 生產中的能源效率
    • 環保舉措
    • 碳足跡考量

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • MEA
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 夥伴關係與合作
    • 新產品發布
  • 擴張計劃和資金

第5章:市場估計與預測:按設備,2021 - 2034 年

  • 主要趨勢
  • 控制系統
    • DP控制台
    • 位置參考系統
    • 運動感應器
  • 電力系統
    • 產生器
    • 配電盤
    • 電源管理系統
  • 推進器系統
    • 隧道推進器
    • 方位推進器
    • 福伊特施耐德螺旋槳

第6章:市場估計與預測:按系統,2021 - 2034 年

  • 主要趨勢
  • 1級
  • 2級
  • 3級

第7章:市場估計與預測:按應用,2021 - 2034 年

  • 主要趨勢
  • 近海船舶
    • 平台供應船(PSV)
    • 錨處理拖船供應船(AHTSV)
    • 潛水支援船(DSV)
    • ROV支援船
  • 海上平台
    • 浮式生產儲卸油裝置(FPSO)
    • 半潛式鑽井平台
    • 鑽孔機
  • 海軍艦艇
    • 研究和勘測船
    • 掃雷者
  • 其他
    • 遊輪
    • 渡輪
    • 電纜敷設船
    • 風電場安裝船

第8章:市場估計與預測:依最終用途,2021 - 2034 年

  • 主要趨勢
  • 石油和天然氣
  • 海上再生能源
  • 國防與海軍
  • 海洋研究
  • 商業運輸

第9章:市場估計與預測:依銷售管道,2021 - 2034 年

  • 主要趨勢
  • OEM
  • 售後市場

第10章:市場估計與預測:按地區,2021 - 2034 年

  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
    • 比利時
    • 瑞典
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 新加坡
    • 韓國
    • 東南亞
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:公司簡介

  • ABB
  • Alphatron Marine
  • GE Vernova
  • Japan Radio Company
  • Kongsberg
  • L3 Harris
  • Marine Technologies
  • Navis Engineering
  • Norr Systems
  • Praxis Automation Technology
  • RH Marine
  • Rolls Royce
  • Royal IHC
  • Sonardyne
  • Thrustmaster of Texas
  • Twin Disc
  • Veethree
  • Volvo Penta
  • Wartsila
  • Xenta Systems
簡介目錄
Product Code: 13996

The Global Marine Dynamic Positioning System Market was valued at USD 9.2 billion in 2024 and is estimated to grow at a CAGR of 12.6% to reach USD 29.3 billion by 2034. The market is expanding rapidly and is expected to maintain strong growth in the future, driven by an increase in offshore exploration and production activities, maritime research, and specialized naval vessels. These vessels require either general-purpose or specialized dynamic positioning systems (DPS) to ensure high-precision station-keeping capabilities. Recent innovations in control systems, sensors, and automation technologies have improved the performance and reliability of DPS, positioning them as essential tools in modern maritime operations.

Marine Dynamic Positioning System Market - IMG1

Moreover, the future development of powerful dynamic positioning systems will rely heavily on artificial intelligence-based control technologies and predictive maintenance software. These advancements will reduce operational risks, optimize fuel consumption, and leverage real-time data for greater operational efficiency. The Asia-Pacific region is becoming a significant market for DPS due to substantial investments in offshore infrastructure and renewable energy projects. Countries in the region are prioritizing advanced maritime capabilities, including ships that don't rely on traditional anchoring methods. As technological and operational considerations evolve, the DPS market is poised to experience substantial growth, driven by global priorities surrounding safety and efficiency in oceanic and aquatic operations.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$9.2 Billion
Forecast Value$29.3 Billion
CAGR12.6%

In 2024, control systems led the market, accounting for 45% of the share, with expectations for the segment to generate USD 11 billion by 2034. As offshore operations become more sophisticated, control systems continue to evolve to meet the increasing demands of modern DPS. These systems have significantly improved with enhanced algorithms, intuitive human-machine interfaces, and automation features that allow vessels to remain steady in even the most challenging conditions.

In 2024, the Class 2 segment held a 55% market share. Class 2 dynamic positioning systems are widely used in offshore drilling, subsea construction, and other critical marine environments, where maintaining system integrity is paramount. These systems are known for their operational reliability, accuracy in maintaining position, and ability to handle extreme operational conditions. Equipped with advanced control features and redundancy, Class 2 systems can continue to operate even during critical failures. Their high reliability and cost-effectiveness make them the preferred choice for operators, as they provide strong positioning without the complexity and higher costs associated with Class 3 systems.

United States Marine Dynamic Positioning System Market was valued at USD 2 billion in 2024. The U.S. plays a dominant role in this sector, driven by substantial offshore oil and gas activities, particularly in regions where high precision is necessary to ensure safe and efficient operations. The country's advanced marine infrastructure and the presence of top offshore service providers further contribute to the demand for various levels of DPS across different industries. In addition to supporting oil and gas operations, the U.S. is also increasingly focusing on developing DPS solutions for naval operations, renewable energy projects, such as offshore wind farms, and other specialized applications.

Key players operating in the Global Marine Dynamic Positioning System Industry include ABB, L3 Harris, Rolls Royce, Kongsberg, Volvo Penta, Marine Technologies, Wartsila, Xenta Systems, and GE Vernova. To solidify their market positions, companies in the marine dynamic positioning system industry are focusing on product innovation, investing in R&D for AI-powered control systems, and enhancing predictive maintenance capabilities. By integrating cutting-edge sensors, automation technologies, and real-time data analytics, these companies are improving the performance and efficiency of their systems. Additionally, some players are expanding their product offerings to cater to the growing demand for renewable energy solutions, such as offshore wind farms. Strategic partnerships, acquisitions, and regional expansion are also key strategies to enhance market presence and leverage new growth opportunities.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Equipment
    • 2.2.3 System
    • 2.2.4 Application
    • 2.2.5 End use
    • 2.2.6 Sales Channel
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rising demand for maritime safety
      • 3.2.1.2 Increased maritime traffic and global trade
      • 3.2.1.3 Naval and military modernization
      • 3.2.1.4 Increase in offshore energy exploration and development
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Technological complexity and lack of skilled personnel
      • 3.2.2.2 High initial and maintenance costs
    • 3.2.3 Market opportunity
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and Innovation landscape
    • 3.7.1 Current technological trends
      • 3.7.1.1 Integration of advanced sensor fusion systems
      • 3.7.1.2 Use of redundant and fail-safe architectures
      • 3.7.1.3 Real-time remote monitoring & diagnostics
      • 3.7.1.4 AI-based dynamic control algorithms
    • 3.7.2 Emerging technologies
      • 3.7.2.1 Autonomous vessel navigation with integrated DP
      • 3.7.2.2 Digital twin technology for DP simulation
      • 3.7.2.3 Hybrid power integration & green DP systems
      • 3.7.2.4 Blockchain for data integrity in DP logs
  • 3.8 Price trend
    • 3.8.1 By region
    • 3.8.2 By equipment
  • 3.9 Cost breakdown analysis
  • 3.10 Patent analysis
  • 3.11 Sustainability and environmental aspects
    • 3.11.1 Sustainable practices
    • 3.11.2 Waste reduction strategies
    • 3.11.3 Energy efficiency in production
    • 3.11.4 Eco-friendly initiatives
    • 3.11.5 Carbon footprint considerations

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
  • 4.7 Expansion Plans and funding

Chapter 5 Market Estimates & Forecast, By Equipment, 2021 - 2034 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Control system
    • 5.2.1 DP control console
    • 5.2.2 Position reference system
    • 5.2.3 Motion sensors
  • 5.3 Power system
    • 5.3.1 Generators
    • 5.3.2 Switchboards
    • 5.3.3 Power management system
  • 5.4 Thruster system
    • 5.4.1 Tunnel thrusters
    • 5.4.2 Azimuth thrusters
    • 5.4.3 Voith schneider propellers

Chapter 6 Market Estimates & Forecast, By System, 2021 - 2034 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Class 1
  • 6.3 Class 2
  • 6.4 Class 3

Chapter 7 Market Estimates & Forecast, By Application, 2021 - 2034 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Offshore Vessels
    • 7.2.1 Platform supply vessels (PSVs)
    • 7.2.2 Anchor handling tug supply vessels (AHTSVs)
    • 7.2.3 Dive support vessels (DSVs)
    • 7.2.4 ROV support vessels
  • 7.3 Offshore Platforms
    • 7.3.1 Floating production storage and offloading (FPSO) Units
    • 7.3.2 Semi-submersibles
    • 7.3.3 Drilling rigs
  • 7.4 Naval Vessels
    • 7.4.1 Research and survey vessels
    • 7.4.2 Mine hunters
  • 7.5 Others
    • 7.5.1 Cruise ships
    • 7.5.2 Ferries
    • 7.5.3 Cable-laying ships
    • 7.5.4 Wind farm installation vessels

Chapter 8 Market Estimates & Forecast, By End Use, 2021 - 2034 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Oil & Gas
  • 8.3 Offshore renewable energy
  • 8.4 Defense & Naval
  • 8.5 Marine research
  • 8.6 Commercial shipping

Chapter 9 Market Estimates & Forecast, By Sales Channel, 2021 - 2034 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 OEM
  • 9.3 Aftermarket

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn, Units)

  • 10.1 North America
    • 10.1.1 U.S.
    • 10.1.2 Canada
  • 10.2 Europe
    • 10.2.1 UK
    • 10.2.2 Germany
    • 10.2.3 France
    • 10.2.4 Italy
    • 10.2.5 Spain
    • 10.2.6 Russia
    • 10.2.7 Belgium
    • 10.2.8 Sweden
  • 10.3 Asia Pacific
    • 10.3.1 China
    • 10.3.2 India
    • 10.3.3 Japan
    • 10.3.4 Australia
    • 10.3.5 Singapore
    • 10.3.6 South Korea
    • 10.3.7 Southeast Asia
  • 10.4 Latin America
    • 10.4.1 Brazil
    • 10.4.2 Mexico
    • 10.4.3 Argentina
  • 10.5 MEA
    • 10.5.1 South Africa
    • 10.5.2 Saudi Arabia
    • 10.5.3 UAE

Chapter 11 Company Profiles

  • 11.1 ABB
  • 11.2 Alphatron Marine
  • 11.3 GE Vernova
  • 11.4 Japan Radio Company
  • 11.5 Kongsberg
  • 11.6 L3 Harris
  • 11.7 Marine Technologies
  • 11.8 Navis Engineering
  • 11.9 Norr Systems
  • 11.10 Praxis Automation Technology
  • 11.11 RH Marine
  • 11.12 Rolls Royce
  • 11.13 Royal IHC
  • 11.14 Sonardyne
  • 11.15 Thrustmaster of Texas
  • 11.16 Twin Disc
  • 11.17 Veethree
  • 11.18 Volvo Penta
  • 11.19 Wartsila
  • 11.20 Xenta Systems