封面
市場調查報告書
商品編碼
1750510

智慧過程自動化市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

Intelligent Process Automation Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 170 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024年,全球智慧流程自動化 (IPA) 市場規模達152億美元,預計到2034年將以14.3%的複合年成長率成長,達到488億美元。這一快速成長主要得益於各行各業數位轉型的日益普及,以及對人工智慧和機器學習等先進技術日益成長的需求,這些技術旨在最佳化業務營運。企業面臨著提升營運效率、削減成本和提供更好客戶體驗的壓力,所有這些都在加速向智慧自動化的轉變。 IPA解決方案使企業能夠消除手動重複性任務,並透過數據驅動的洞察來改善決策。隨著越來越多的企業採用自動化,對可擴展和自適應技術的需求持續激增。市場受益於各種認知技術的整合,使企業能夠重新思考其工作流程,進而提高敏捷性、創新性和績效。各產業擴大部署IPA工具,凸顯了一個更廣泛的趨勢:自動化不再只是被視為一種成本削減機制,而是成為競爭優勢和數位韌性的關鍵推動因素。

智慧過程自動化市場 - IMG1

IPA 的主要成長動力之一是支援即時資料處理、模式識別和持續學習的人工智慧元件的整合。憑藉人工智慧功能,IPA 平台可以適應不斷變化的業務需求、分析非結構化資料並做出預測性決策。企業正在轉向這些工具來提高透明度、減少人為錯誤並簡化大批量操作。雲端解決方案和低程式碼/無程式碼開發平台的日益普及也推動了自動化的發展,使 IPA 更易於在不同業務環境中存取和實施。這些創新正在幫助企業打破孤島,應對與遺留系統和碎片化資料環境相關的挑戰。因此,智慧自動化正日益嵌入到​​核心業務功能中,支援從合規性監控到客戶參與的所有方面,同時透過減少紙張使用和能源消耗為永續發展做出貢獻。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 152億美元
預測值 488億美元
複合年成長率 14.3%

就組件而言,IPA 市場細分為解決方案和服務。解決方案部分在 2024 年佔據約 67% 的主導佔有率,預計在整個預測期內將以超過 15% 的複合年成長率成長。這些平台因其在高級功能和易於部署之間的平衡而吸引了許多行業。透過整合人工智慧、機器學習和機器人流程自動化,IPA 解決方案可以有效率地實現後台和前端工作流程的自動化。它們能夠增強合規性、跨職能擴展並減少對手動流程的依賴,使其成為尋求穩定、智慧自動化系統的企業的首選。從文件處理到客戶互動管理,這些解決方案可以減少錯誤、提高資料準確性並支援持續的流程改進。

依部署方式,市場可分為雲端部署和本地部署兩種模式。雲端IPA在2024年佔據了62%的市場佔有率,預計2025年至2034年的複合年成長率將超過14.9%。這些平台擁有許多關鍵優勢,例如更快的實施速度、更強大的整合能力以及遠端存取能力,使其成為正在進行數位轉型的企業的理想之選。其集中式基礎架構以及與SaaS應用程式的兼容性,使企業能夠跨部門和地區無縫地實現流程自動化。越來越多的小型和大型組織選擇雲端部署,以加快合規性、入職培訓和交易處理等領域的自動化進程。

按技術分類,市場細分為機器學習 (ML)、自然語言處理 (NLP)、機器人流程自動化 (RPA)、電腦視覺、虛擬代理等。機器學習引領該領域,因為它在提升自動化平台的適應性和智慧性方面發揮了變革性作用。機器學習使系統能夠從資料中學習、檢測趨勢並在無需手動編程的情況下做出決策。它廣泛應用於需要預測性洞察和管理複雜或非結構化資料集能力的應用程式。對機器學習的日益依賴凸顯了其在推動IPA從基於規則的靜態系統向支援戰略業務目標的動態、支持學習的解決方案演變方面的重要性。

從地區來看,美國在2024年佔據北美市場主導地位,佔據該地區約84.4%的收入,創造了近48億美元的市場規模。美國在數位創新方面的領導地位,加上企業對人工智慧技術的大力採用,使其繼續處於智慧自動化領域的前沿。美國市場受益於成熟的IT基礎設施、對自動化技術的大量投資以及主要軟體供應商的高度集中。隨著數位轉型成為各行各業的首要任務,預計在整個預測期內,對敏捷、智慧且可擴展的自動化平台的需求將保持強勁。

目錄

第1章:方法論與範圍

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
  • 供應商格局
    • 技術提供者
    • 系統整合商
    • 雲端和基礎設施供應商
    • 最終用途
  • 川普政府關稅的影響
    • 貿易影響
      • 貿易量中斷
      • 報復措施
    • 對產業的影響
      • 供應方影響(原料)
        • 主要材料價格波動
        • 供應鏈重組
        • 生產成本影響
      • 需求面影響(客戶成本)
        • 價格傳導至終端市場
        • 市佔率動態
        • 消費者反應模式
    • 受影響的主要公司
    • 策略產業反應
      • 供應鏈重組
      • 定價和產品策略
      • 政策參與
    • 展望與未來考慮
  • 利潤率分析
  • 技術與創新格局
  • 專利分析
  • 用例
  • 重要新聞和舉措
  • 監管格局
  • 衝擊力
    • 成長動力
      • 快速數位轉型
      • 人工智慧和機器學習在業務流程中的整合
      • 機器人流程自動化(RPA)的採用日益增多
      • 雲端採用和 SaaS 擴展
    • 產業陷阱與挑戰
      • 實施成本高
      • 資料隱私和安全問題
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第5章:市場估計與預測:按組件,2021 - 2034 年

  • 主要趨勢
  • 解決方案
  • 服務
    • 專業服務
    • 託管服務

第6章:市場估計與預測:依部署模型,2021 - 2034 年

  • 主要趨勢
  • 基於雲端
  • 本地

第7章:市場估計與預測:依技術分類,2021 - 2034 年

  • 主要趨勢
  • 機器學習(ML)
  • 自然語言處理(NLP)
  • 機器人流程自動化(RPA)
  • 電腦視覺
  • 虛擬代理
  • 其他

第8章:市場估計與預測:依組織規模,2021 - 2034 年

  • 主要趨勢
  • 大型企業
  • 中小企業

第9章:市場估計與預測:按應用,2021 - 2034

  • 主要趨勢
  • 業務流程自動化
  • IT營運
  • 應用程式管理
  • 內容管理
  • 安全管理
  • 其他

第10章:市場估計與預測:依最終用途,2021 - 2034 年

  • 主要趨勢
  • 金融服務業
  • 衛生保健
  • 零售
  • IT和電信
  • 傳播、媒體與教育
  • 製造業
  • 物流、能源和公用事業
  • 其他

第 11 章:市場估計與預測:按地區,2021 年至 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
    • 北歐人
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 東南亞
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯
    • 南非

第12章:公司簡介

  • AntWorks
  • Appian
  • Automation Anywhere
  • Blue Prism
  • Cognizant Technology Solutions
  • HCLTech
  • HelpSystems
  • IBM
  • Infosys
  • Kofax
  • Microsoft
  • NICE
  • Oracle Corporation
  • Pegasystems
  • Salesforce
  • SAP SE
  • Tata Consultancy Services (TCS)
  • UiPath
  • Wipro
  • WorkFusion
簡介目錄
Product Code: 13903

The Global Intelligent Process Automation (IPA) Market was valued at USD 15.2 billion in 2024 and is estimated to grow at a CAGR of 14.3% to reach USD 48.8 billion by 2034. This rapid growth is largely fueled by the increasing adoption of digital transformation across industries and the rising need for advanced technologies like artificial intelligence and machine learning to optimize business operations. Companies are under pressure to enhance operational efficiency, cut costs, and deliver better customer experiences-all of which are accelerating the shift toward intelligent automation. IPA solutions are enabling organizations to eliminate manual, repetitive tasks and improve decision-making through data-driven insights. As more businesses embrace automation, the demand for scalable and adaptive technologies continues to surge. The market is benefiting from the convergence of various cognitive technologies, allowing businesses to rethink their workflows for greater agility, innovation, and performance. Increasing deployment of IPA tools across sectors highlights a broader trend where automation is no longer viewed solely as a cost-cutting mechanism but as a key enabler of competitive advantage and digital resilience.

Intelligent Process Automation Market - IMG1

One of the major growth drivers for IPA is the integration of artificial intelligence components that support real-time data processing, pattern recognition, and continuous learning. With AI capabilities, IPA platforms can adapt to changing business needs, analyze unstructured data, and make predictive decisions. Organizations are turning to these tools to increase transparency, reduce human error, and streamline high-volume operations. The push toward automation is also being bolstered by the growing availability of cloud-based solutions and low-code/no-code development platforms, making IPA more accessible and easier to implement across diverse business environments. These innovations are helping companies break down silos and address challenges associated with legacy systems and fragmented data landscapes. As a result, intelligent automation is becoming increasingly embedded in core business functions, supporting everything from compliance monitoring to customer engagement, all while contributing to sustainability efforts by reducing paper usage and energy consumption.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$15.2 Billion
Forecast Value$48.8 Billion
CAGR14.3%

In terms of components, the IPA market is segmented into solutions and services. The solutions segment held a dominant share of approximately 67% in 2024 and is anticipated to grow at a CAGR exceeding 15% throughout the forecast period. These platforms appeal to a wide range of industries due to their balance of advanced features and ease of deployment. By incorporating AI, machine learning, and robotic process automation, IPA solutions can automate both back-office and front-end workflows efficiently. Their ability to enhance compliance, scale across functions, and reduce dependency on manual processes makes them a preferred choice for enterprises seeking stable, intelligent automation systems. From document processing to customer interaction management, these solutions enable error reduction, improve data accuracy, and support continuous process improvement.

Based on deployment, the market is categorized into cloud-based and on-premises models. Cloud-based IPA held the majority share of 62% in 2024 and is projected to expand at a CAGR of over 14.9% from 2025 to 2034. These platforms offer key advantages such as faster implementation, better integration capabilities, and remote accessibility, making them ideal for businesses undergoing digital transformation. Their centralized infrastructure and compatibility with SaaS applications allow companies to automate processes seamlessly across different departments and geographies. Both small and large organizations are increasingly opting for cloud deployment to speed up automation efforts in areas like compliance, onboarding, and transactional processing.

By technology, the market is segmented into machine learning (ML), natural language processing (NLP), robotic process automation (RPA), computer vision, virtual agents, and others. Machine learning leads the segment due to its transformative role in enhancing the adaptability and intelligence of automation platforms. ML allows systems to learn from data, detect trends, and make decisions without manual programming. It is widely used for applications that require predictive insights and the ability to manage complex or unstructured datasets. The growing reliance on machine learning underscores its importance in driving the evolution of IPA from static rule-based systems to dynamic, learning-enabled solutions that support strategic business goals.

Regionally, the United States dominated the North American market in 2024, capturing around 84.4% of the regional revenue and generating close to USD 4.8 billion. The country's leadership in digital innovation, combined with strong enterprise adoption of AI-powered technologies, continues to position it at the forefront of intelligent automation. The U.S. market benefits from a mature IT infrastructure, substantial investment in automation technologies, and a high concentration of major software vendors. With digital transformation being a top priority across industries, the demand for agile, intelligent, and scalable automation platforms is expected to remain strong throughout the forecast period.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
  • 1.2 Base estimates and calculations
    • 1.2.1 Base year calculation
    • 1.2.2 Key trends for market estimates
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Technology providers
    • 3.2.2 System integrators
    • 3.2.3 Cloud and infrastructure providers
    • 3.2.4 End use
  • 3.3 Impact of Trump administration tariffs
    • 3.3.1 Trade impact
      • 3.3.1.1 Trade volume disruptions
      • 3.3.1.2 Retaliatory measures
    • 3.3.2 Impact on industry
      • 3.3.2.1 Supply-side impact (raw materials)
        • 3.3.2.1.1 Price volatility in key materials
        • 3.3.2.1.2 Supply chain restructuring
        • 3.3.2.1.3 Production cost implications
      • 3.3.2.2 Demand-side impact (Cost to customers)
        • 3.3.2.2.1 Price transmission to end markets
        • 3.3.2.2.2 Market share dynamics
        • 3.3.2.2.3 Consumer response patterns
    • 3.3.3 Key companies impacted
    • 3.3.4 Strategic industry responses
      • 3.3.4.1 Supply chain reconfiguration
      • 3.3.4.2 Pricing and product strategies
      • 3.3.4.3 Policy engagement
    • 3.3.5 Outlook & future considerations
  • 3.4 Profit margin analysis
  • 3.5 Technology & innovation landscape
  • 3.6 Patent analysis
  • 3.7 Use cases
  • 3.8 Key news & initiatives
  • 3.9 Regulatory landscape
  • 3.10 Impact forces
    • 3.10.1 Growth drivers
      • 3.10.1.1 Rapid digital transformation
      • 3.10.1.2 Integration of AI and machine learning in business processes
      • 3.10.1.3 Growing adoption of Robotic Process Automation (RPA)
      • 3.10.1.4 Cloud adoption and SaaS expansion
    • 3.10.2 Industry pitfalls & challenges
      • 3.10.2.1 High implementation costs
      • 3.10.2.2 Data privacy and security concerns
  • 3.11 Growth potential analysis
  • 3.12 Porter's analysis
  • 3.13 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 ($Mn)

  • 5.1 Key trends
  • 5.2 Solution
  • 5.3 Services
    • 5.3.1 Professional services
    • 5.3.2 Managed services

Chapter 6 Market Estimates & Forecast, By Deployment Model, 2021 - 2034 ($Mn)

  • 6.1 Key trends
  • 6.2 Cloud-based
  • 6.3 On-premises

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2034 ($Mn)

  • 7.1 Key trends
  • 7.2 Machine Learning (ML)
  • 7.3 Natural Language Processing (NLP)
  • 7.4 Robotic Process Automation (RPA)
  • 7.5 Computer vision
  • 7.6 Virtual agents
  • 7.7 Others

Chapter 8 Market Estimates & Forecast, By Organization Size, 2021 - 2034 ($Mn)

  • 8.1 Key trends
  • 8.2 Large enterprise
  • 8.3 SME

Chapter 9 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn)

  • 9.1 Key trends
  • 9.2 Business process automation
  • 9.3 IT operations
  • 9.4 Application management
  • 9.5 Content management
  • 9.6 Security management
  • 9.7 Others

Chapter 10 Market Estimates & Forecast, By End Use, 2021 - 2034 ($Mn)

  • 10.1 Key trends
  • 10.2 BFSI
  • 10.3 Healthcare
  • 10.4 Retail
  • 10.5 IT & telecom
  • 10.6 Communication and media & education
  • 10.7 Manufacturing
  • 10.8 Logistics, energy & utilities
  • 10.9 Others

Chapter 11 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 U.S.
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 UK
    • 11.3.2 Germany
    • 11.3.3 France
    • 11.3.4 Italy
    • 11.3.5 Spain
    • 11.3.6 Russia
    • 11.3.7 Nordics
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 South Korea
    • 11.4.5 ANZ
    • 11.4.6 Southeast Asia
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Argentina
  • 11.6 MEA
    • 11.6.1 UAE
    • 11.6.2 Saudi Arabia
    • 11.6.3 South Africa

Chapter 12 Company Profiles

  • 12.1 AntWorks
  • 12.2 Appian
  • 12.3 Automation Anywhere
  • 12.4 Blue Prism
  • 12.5 Cognizant Technology Solutions
  • 12.6 HCLTech
  • 12.7 HelpSystems
  • 12.8 IBM
  • 12.9 Infosys
  • 12.10 Kofax
  • 12.11 Microsoft
  • 12.12 NICE
  • 12.13 Oracle Corporation
  • 12.14 Pegasystems
  • 12.15 Salesforce
  • 12.16 SAP SE
  • 12.17 Tata Consultancy Services (TCS)
  • 12.18 UiPath
  • 12.19 Wipro
  • 12.20 WorkFusion