封面
市場調查報告書
商品編碼
1750325

超導量子晶片市場機會、成長動力、產業趨勢分析及2025-2034年預測

Superconducting Quantum Chip Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 160 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024年,全球超導量子晶片市場規模達5.124億美元,預計年複合成長率將達17.2%,到2034年將達到24.6億美元。這得益於全球研發投入的不斷增加,以及醫療保健、製藥和材料科學領域對先進運算技術需求的激增。醫療設備(尤其是像核磁共振成像系統這樣需要強磁場的設備)的應用不斷擴展,正在推動超導量子晶片的普及。

超導量子晶片市場 - IMG1

全球向高效能運算 (HPC) 的轉變正在加速對這些材料的需求,尤其是在速度、準確性和處理能力至關重要的領域。在金融服務領域,超導量子晶片正被用於高頻交易、風險分析、投資組合最佳化和詐欺檢測等需要即時資料處理和快速決策的應用。它們在解決複雜數學問題方面擁有遠超傳統系統能力的潛力,吸引了金融機構和金融科技公司的大量投資。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 5.124億美元
預測值 24.6億美元
複合年成長率 17.2%

然而,國際貿易緊張局勢和關稅政策,尤其是影響鋼鐵、鋁和電子元件等原料的政策,擾亂了供應鏈。這些干擾迫使製造商重新考慮採購策略,並尋找替代供應商。結果,材料成本上漲減緩了創新週期,並導致某些技術部署延遲。儘管面臨這些挑戰,但該行業仍展現出韌性和適應性,尤其是在新技術的湧現以及專注於可擴展性和性能的策略合作的推動下。

超導量子晶片市場按應用細分為量子模擬、密碼學與安全、機器學習與人工智慧 (AI) 以及最佳化問題。量子模擬領域預計將大幅擴張,預計到 2034 年市場價值將達到 11.1 億美元。超導量子晶片複製複雜量子系統的能力不斷增強,而這些系統幾乎無法用傳統運算方法建模,推動了這一成長。隨著量子模擬變得越來越可行,它為化學、物理學和材料科學領域的突破開闢了新的可能性。

在各種量子位元類型中,transmon 量子位元已獲得顯著的市場佔有率,其估值在 2024 年達到 2.42 億美元。其吸引力在於其穩定性以及與傳統半導體製造製程的兼容性,從而實現了可擴展的生產。這些量子位元與低溫 CMOS 系統整合,並透過先進的讀出和控制技術進行精煉。 transmon 量子位元對平面電路佈局的適應性使其成為建立量子平台公司的首選。其他量子位元類型,例如通量、相位和拓撲量子位元,也正在開發中,為市場多元化和技術實驗做出貢獻。

2024年,美國超導量子晶片市場規模達1.144億美元。這一成長得益於強大的研究機構生態系統、聯邦政府資金以及遍布技術驅動型地區的創新集群。目前,相關部門正在努力推動國防、電信和資料處理等領域的可擴展量子運算。全球市場將繼續受益於公眾認知度的提升、技術的進步以及對量子基礎設施的日益關注。

該行業的主要參與者包括 Ion Q、IBM 公司、英特爾公司、微軟公司和東芝公司。為了鞏固市場地位,超導量子晶片領域的領先公司專注於一系列策略舉措。這些舉措包括與學術機構和新創公司建立合作夥伴關係、投資專有技術開發以及擴大製造能力以提高產量。這些公司將超導晶片與低溫系統整合,以提高營運效率。此外,獲得政府合約、申請專利以及擴大中試生產線規模也是其更廣泛策略的一部分,旨在提昇在量子計算領域的市場覆蓋率和技術領先地位。

目錄

第1章:方法論與範圍

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
  • 川普政府關稅分析
    • 對貿易的影響
      • 貿易量中斷
      • 報復措施
      • 對產業的影響
        • 供給側影響(零件)
          • 價格波動
          • 供應鏈重組
          • 生產成本影響
        • 需求面影響
          • 價格傳導至終端市場
          • 市佔率動態
          • 最終用戶回應模式
      • 受影響的主要公司
      • 策略產業反應
        • 供應鏈重組
        • 定價和產品策略
        • 政策參與
      • 展望與未來考慮
  • 產業衝擊力
    • 成長動力
      • 量子運算研發投資不斷增加
      • 超導量子位元相干時間的進展
      • 增加政府措施和資金
      • 材料和製藥領域對量子模擬的需求不斷成長
      • 擴展量子雲端運算服務
    • 陷阱與挑戰
      • 複雜的製造和可擴展性問題
      • 缺乏標準化的量子開發框架
  • 成長潛力分析
  • 監管格局
  • 技術格局
  • 未來市場趨勢
  • 差距分析
  • 波特的分析
  • PESTEL分析

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 策略儀表板

第5章:市場估計與預測:按量子位元類型,2021 - 2034 年

  • 主要趨勢
  • Transmon量子比特
  • 通量量子比特
  • 相位量子比特
  • 拓樸量子比特

第6章:市場估計與預測:按應用,2021 - 2034 年

  • 主要趨勢
  • 量子模擬
  • 最佳化問題
  • 機器學習與人工智慧
  • 密碼學與安全

第7章:市場估計與預測:按最終用途產業,2021 - 2034 年

  • 主要趨勢
  • 航太與國防
  • 金融服務業
  • 醫療保健和製藥
  • 能源與公用事業
  • IT與電信

第8章:市場估計與預測:按地區,2021 - 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 荷蘭
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國

第9章:公司簡介

  • Alibaba Group (Alibaba Quantum Laboratory)
  • D-Wave Quantum Inc.
  • Fujitsu
  • Google LLC (Alphabet Inc.)
  • Honeywell International Inc. (Quantinuum)
  • IBM Corporation
  • Intel Corporation
  • Ion Q
  • Microsoft Corporation (StationQ)
  • Northrop Grumman Corporation
  • Rigetti Computing
  • Toshiba Corporation
簡介目錄
Product Code: 13781

The Global Superconducting Quantum Chip Market was valued at USD 512.4 million in 2024 and is estimated to grow at a CAGR of 17.2% to reach USD 2.46 billion by 2034, driven by increasing global investments in R&D and the surge in demand for advanced computing technologies across healthcare, pharmaceuticals, and materials science. Expanding applications in medical devices, especially those requiring strong magnetic fields like MRI systems, are fueling adoption.

Superconducting Quantum Chip Market - IMG1

The global shift toward high-performance computing (HPC) is accelerating the demand for these materials, particularly in sectors where speed, accuracy, and processing power are critical. In financial services, superconducting quantum chips are being explored for high-frequency trading, risk analysis, portfolio optimization, and fraud detection-applications that require real-time data processing and rapid decision-making. Their potential to solve complex mathematical problems far beyond the capabilities of classical systems is attracting major investment from financial institutions and fintech firms.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$512.4 Million
Forecast Value$2.46 Billion
CAGR17.2%

However, international trade tensions and tariff policies, particularly those affecting raw materials like steel, aluminum, and electronics components, have disrupted supply chains. These disruptions have forced manufacturers to reconsider sourcing strategies and look for alternative suppliers. As a result, increased material costs have slowed innovation cycles and caused delays in some technology deployments. Despite these challenges, the industry is showing resilience and adaptability, especially with the emergence of new technologies and strategic collaborations focused on scalability and performance.

The superconducting quantum chip market is segmented by application into quantum simulation, cryptography and security, machine learning and artificial intelligence (AI), and optimization problems. The quantum simulation segment is poised for substantial expansion and is forecasted to achieve a market value of USD 1.11 billion by 2034. The growth is driven by the increasing ability of superconducting quantum chips to replicate complex quantum systems that are nearly impossible to model using classical computing methods. As quantum simulation becomes more viable, it opens new possibilities for breakthroughs in chemistry, physics, and materials science.

Among the various qubit types, transmon qubits have gained significant market share, reaching a valuation of USD 242 million in 2024. Their appeal lies in their stability and compatibility with conventional semiconductor manufacturing processes, which enable scalable production. These qubits integrate with cryogenic CMOS systems and refine through advanced readout and control techniques. The adaptability of transmon qubits to planar circuit layouts makes them a favorable choice for companies building quantum platforms. Other qubit types, such as flux, phase, and topological qubits, are also under development and contribute to market diversity and technological experimentation.

U.S. Superconducting Quantum Chip Market reached USD 114.4 million in 2024. This growth is supported by a robust ecosystem of research institutions, federal funding, and innovation clusters across technology-driven regions. Ongoing efforts aim to advance scalable quantum computing for sectors like defense, telecommunications, and data processing. The global market continues to benefit from rising awareness, technical advancements, and a stronger focus on quantum infrastructure.

Key players in the industry include Ion Q, IBM Corporation, Intel Corporation, Microsoft Corporation, and Toshiba Corporation. To strengthen their market position, leading companies in the superconducting quantum chip space focus on a combination of strategic moves. These include forming collaborative partnerships with academic institutions and startups, investing in proprietary technology development, and expanding fabrication capabilities for higher yield. Companies integrate superconducting chips with cryogenic systems to improve operational efficiency. In addition, securing government contracts, filing patents, and scaling up pilot production lines are part of their broader strategy to enhance market reach and technological leadership in the quantum computing space.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Trump administration tariffs analysis
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
      • 3.2.1.3 Impact on the industry
        • 3.2.1.3.1 Supply-side impact (components)
          • 3.2.1.3.1.1 Price volatility
          • 3.2.1.3.1.2 Supply chain restructuring
          • 3.2.1.3.1.3 Production cost implications
        • 3.2.1.3.2 Demand-side impact
          • 3.2.1.3.2.1 Price transmission to end markets
          • 3.2.1.3.2.2 Market share dynamics
          • 3.2.1.3.2.3 End user response patterns
      • 3.2.1.4 Key companies impacted
      • 3.2.1.5 Strategic industry responses
        • 3.2.1.5.1 Supply chain reconfiguration
        • 3.2.1.5.2 Pricing and product strategies
        • 3.2.1.5.3 Policy engagement
      • 3.2.1.6 Outlook and future considerations
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Rising investments in quantum computing R&D
      • 3.3.1.2 Advancements in superconducting qubit coherence time
      • 3.3.1.3 Increasing government initiatives and funding
      • 3.3.1.4 Growing demand for quantum simulation in materials and pharmaceuticals
      • 3.3.1.5 Expansion of quantum cloud computing services
    • 3.3.2 pitfalls and challenges
      • 3.3.2.1 Complex fabrication and scalability issues
      • 3.3.2.2 Lack of standardized quantum development frameworks
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
  • 3.6 Technology landscape
  • 3.7 Future market trends
  • 3.8 Gap analysis
  • 3.9 Porter's analysis
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Qubits Type, 2021 - 2034 ($ Mn)

  • 5.1 Key trends
  • 5.2 Transmon qubits
  • 5.3 Flux qubits
  • 5.4 Phase qubits
  • 5.5 Topological qubits

Chapter 6 Market Estimates and Forecast, By Application, 2021 - 2034 ($ Mn)

  • 6.1 Key trends
  • 6.2 Quantum simulation
  • 6.3 Optimization problems
  • 6.4 Machine learning & AI
  • 6.5 Cryptography & security

Chapter 7 Market Estimates and Forecast, By End Use Industry, 2021 - 2034 ($ Mn)

  • 7.1 Key trends
  • 7.2 Aerospace & defense
  • 7.3 BFSI
  • 7.4 Healthcare & pharmaceuticals
  • 7.5 Energy & utilities
  • 7.6 IT & telecommunications

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 ($ Mn)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Netherlands
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 Middle East and Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 Alibaba Group (Alibaba Quantum Laboratory)
  • 9.2 D-Wave Quantum Inc.
  • 9.3 Fujitsu
  • 9.4 Google LLC (Alphabet Inc.)
  • 9.5 Honeywell International Inc. (Quantinuum)
  • 9.6 IBM Corporation
  • 9.7 Intel Corporation
  • 9.8 Ion Q
  • 9.9 Microsoft Corporation (StationQ)
  • 9.10 Northrop Grumman Corporation
  • 9.11 Rigetti Computing
  • 9.12 Toshiba Corporation