封面
市場調查報告書
商品編碼
1740809

下一代軍用航空電子設備市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

Next-Gen Military Avionics Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 170 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球下一代軍用航空電子市場價值為 364 億美元,預計到 2034 年將以 4.8% 的複合年成長率成長,達到 576 億美元,這得益於國防現代化投資的激增以及航空電子技術(尤其是先進感測器系統)的不斷創新。隨著世界各國軍隊優先考慮更快、更精確和數據驅動的作戰,對下一代航空電子設備的需求持續成長。各國政府不再只是升級飛機,他們正在徹底改造整個國防生態系統,以支援即時資料處理、無縫整合和多域互通性。這種轉變反映了一種更廣泛的變革,數位化不再是可有可無的,而是戰備的必要條件。國防機構越來越關注增強態勢感知、機器學習整合和資料融合等能力,所有這些能力都需要高度複雜的航空電子設備套件。因此,航空電子設備已經從一個簡單的子系統發展成為軍用航空平台的骨幹。從高速資料鏈路到人工智慧輔助飛行系統,尖端航空電子設備正在重塑空戰和監視任務的未來。隨著國防預算的增加和地緣政治緊張局勢的加劇,該領域正在經歷前所未有的成長和創新週期。

新一代軍用航空電子設備市場 - IMG1

世界各國正在修訂防空戰略,從老舊系統過渡到能夠提高作戰效率和任務適應性的現代化平台。這項策略轉變源自於對即時決策、卓越威脅探測和一體化戰場協調日益成長的需求。因此,各國軍隊正在將先進的航空電子設備作為核心能力,而非外圍升級。人工智慧、下一代通訊網路和任務自適應飛行管理工具等技術正在為空中性能、安全和自動化樹立新的標準。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 364億美元
預測值 576億美元
複合年成長率 4.8%

貿易政策和全球關稅法規對下一代軍用航空電子設備市場產生了顯著影響。此前,美國對鋁、電子產品和鋼鐵等關鍵航太原料徵收的關稅導致原始設備製造商 (OEM) 和一級供應商的生產成本上升。這些成本上漲不僅影響了利潤率,還導致採購延遲和供應鏈中斷。然而,該行業已做出戰略應對。許多國防承包商已開始在地化生產,以減少對外國零件的依賴並簡化物流運作。這項轉變催化了全球供應鏈更廣泛的轉型,使其更具韌性,也更不容易受到外部衝擊的影響。從長遠來看,本地化的供應生態系統有望提高成本效率,並確保關鍵任務零件的不間斷交付。

2024年,飛行控制系統引領全球新一代軍用航空電子市場,佔30.4%的市場。這種主導地位歸因於對精確飛行控制、更高程度的自動化以及在高風險任務中減少飛行員工作負荷的需求不斷成長。隨著作戰場景日益複雜,並需要瞬時機動,國防部隊正在迅速整合電傳操縱和光控飛行技術等尖端系統。這些系統能夠增強飛機的敏捷性,提高極端條件下的穩定性,並透過卓越的反應速度和控制保真度顯著提升任務效能。

固定翼平台成為2024年最大的收入來源,為全球市場貢獻了231億美元。這些平台包括高性能戰鬥機、遠程轟炸機和戰術運輸機——當代軍事戰略的基石。它們對下一代航空電子設備的依賴對於即時通訊、任務規劃、戰場感知和精確瞄準至關重要。固定翼機隊的升級重點是數位駕駛艙整合、電子戰增強和自適應用戶介面,這反映了數位轉型在空戰和支援任務中日益成長的重要性。

預計到2034年,美國下一代軍用航空電子設備市場將達到19億美元的產值,這得益於美國積極的國防現代化議程、強勁的研發投入以及聯邦政府對下一代技術計劃的大力支持。隨著各軍種系統性地淘汰過時系統,對可互通和整合的航空電子設備的需求持續成長。美國先進的工業基礎和對創新的重視正在加速生產週期,並促進先進解決方案的快速部署。

BAE系統公司、L3哈里斯技術公司、諾斯羅普·格魯曼公司、泰雷茲公司和柯林斯航太等業界領導者正在採取多管齊下的策略,以鞏固其市場地位。這些策略包括加強模組化航空電子架構的研發力度,增強整個航空電子網路的網路安全,以及獲得針對特定平台專案的長期政府合約。許多公司還成立了合資企業,旨在實現在地化生產、最佳化成本並縮短交付時間,為打造更快速、更智慧、更安全的國防航空能力鋪平道路。

目錄

第1章:方法論與範圍

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
  • 川普政府關稅分析
    • 對貿易的影響
      • 貿易量中斷
      • 報復措施
    • 對產業的影響
      • 供給側影響(關鍵組成部分)
        • 主要材料價格波動
        • 供應鏈重組
        • 生產成本影響
      • 需求面影響(售價)
        • 價格傳導至終端市場
        • 市佔率動態
        • 消費者反應模式
    • 受影響的主要公司
    • 策略產業反應
      • 供應鏈重組
      • 定價和產品策略
      • 政策參與
    • 展望與未來考慮
  • 產業衝擊力
    • 成長動力
      • 感測器技術的快速創新以及人工智慧驅動的資料處理和自動化
      • 國防現代化預算的增加推動了先進、可互通的航空電子系統的採購
      • 無人機和自主平台的成長加速了專業化、精密航空電子設備的需求
      • 向網路中心戰的轉變提升了對強大通訊、感測器融合和資料鏈能力的需求
      • 採用軟體定義、開放式架構的航空電子設備有助於快速升級和多平台整合
    • 產業陷阱與挑戰
      • 開發和認證成本高
      • 地緣政治緊張局勢和關稅波動擾亂了關鍵零件的全球供應鏈
  • 成長潛力分析
  • 監管格局
  • 技術格局
  • 未來市場趨勢
  • 差距分析
  • 波特的分析
  • PESTEL分析

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 策略儀表板

第5章:市場估計與預測:按類型,2021 - 2034 年

  • 主要趨勢
  • 飛行控制系統
  • 通訊系統
  • 導航系統
  • 監控系統
  • 其他

第6章:市場估計與預測:按平台,2021 - 2034 年

  • 主要趨勢
  • 固定翼飛機
    • 窄體
    • 寬體飛機
  • 旋翼機
  • 無人駕駛飛行器(UAV)

第7章:市場估計與預測:按銷售點,2021 - 2034 年

  • 主要趨勢
  • OEM
  • 售後市場

第8章:市場估計與預測:按適用性,2021 - 2034 年

  • 主要趨勢
  • 改造
  • 線擬合

第9章:市場估計與預測:按地區,2021 - 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 荷蘭
  • 亞太地區
    • 中國
    • 印度
    • 澳洲
    • 韓國
    • 日本
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 南非

第10章:公司簡介

  • Astronics Corporation
  • BAE Systems
  • Collins Aerospace
  • Curtiss-Wright
  • Elbit System
  • Garmin
  • GE Aviation
  • Honeywell
  • L3Harris Technologies
  • Leonardo SPA
  • Lockheed Martin
  • Northrop Grumman Corporation
  • Scioteq
  • Thales
  • Universal Avionics
簡介目錄
Product Code: 13576

The Global Next-Gen Military Avionics Market was valued at USD 36.4 billion in 2024 and is estimated to grow at a CAGR of 4.8% to reach USD 57.6 billion by 2034, driven by surging investments in defense modernization and relentless innovation in avionics technologies, especially in advanced sensor systems. As militaries around the world prioritize faster, more precise, and data-driven operations, the demand for next-generation avionics continues to escalate. Governments are no longer just upgrading aircraft-they are overhauling entire defense ecosystems to support real-time data processing, seamless integration, and multi-domain interoperability. This shift reflects a broader transformation where digitalization is no longer optional but essential to combat readiness. Defense agencies are increasingly focused on capabilities like enhanced situational awareness, machine learning integration, and data fusion, all of which require highly sophisticated avionics suites. As a result, avionics has evolved from being just a subsystem to becoming the backbone of military aviation platforms. From high-speed data links to AI-assisted flight systems, cutting-edge avionics are reshaping the future of aerial warfare and surveillance missions. With defense budgets expanding and geopolitical tensions intensifying, this sector is experiencing unprecedented growth and innovation cycles.

Next-Gen Military Avionics Market - IMG1

Nations worldwide are revamping their air defense strategies, transitioning from aging legacy systems to modern platforms that promise heightened combat efficiency and mission adaptability. The strategic shift is anchored in the growing need for real-time decision-making, superior threat detection, and integrated battlefield coordination. As a result, militaries are adopting advanced avionics as a core capability, not a peripheral upgrade. Technologies such as artificial intelligence, next-generation communication networks, and mission-adaptive flight management tools are setting new standards for performance, security, and automation in the skies.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$36.4 Billion
Forecast Value$57.6 Billion
CAGR4.8%

Trade policies and global tariff regulations have notably influenced the next-gen military avionics market. Previous tariffs imposed on critical aerospace inputs like aluminum, electronics, and steel contributed to rising production costs for original equipment manufacturers (OEMs) and tier-one suppliers. These increased costs not only impacted profit margins but also led to procurement delays and disrupted supply chains. However, the industry has responded strategically. Many defense contractors have begun localizing production to reduce dependence on foreign components and streamline logistics operations. This shift has catalyzed a broader transformation of global supply chains, making them more resilient and less vulnerable to external shocks. In the long term, localized supply ecosystems are expected to drive cost efficiency and ensure uninterrupted delivery of mission-critical components.

In 2024, flight control systems led the global next-gen military avionics market, commanding a 30.4% market share. This dominance is attributed to the rising demand for precision flight control, greater automation, and reduced pilot workload during high-stakes missions. As combat scenarios grow increasingly complex and require instantaneous maneuvering, defense forces are rapidly integrating cutting-edge systems like fly-by-wire and fly-by-light technologies. These systems enhance aircraft agility, improve stability in extreme conditions, and significantly boost mission effectiveness through superior responsiveness and control fidelity.

Fixed-wing platforms emerged as the top revenue generators in 2024, contributing USD 23.1 billion to the global market. These include high-performance fighter jets, long-range bombers, and tactical transport aircraft-cornerstones of contemporary military strategy. Their reliance on next-gen avionics is critical for real-time communication, mission planning, battlefield awareness, and precision targeting. Upgrades to fixed-wing fleets are focusing on digital cockpit integration, electronic warfare enhancements, and adaptable user interfaces that reflect the growing importance of digital transformation across air combat and support missions.

The United States Next-Gen Military Avionics Market is expected to generate USD 1.9 billion by 2034, propelled by the nation's aggressive defense modernization agenda, robust R&D spending, and federal commitment to next-gen technology initiatives. With military branches systematically phasing out outdated systems, demand for interoperable and integrated avionics continues to rise. America's advanced industrial base and emphasis on innovation are accelerating production cycles and enabling rapid deployment of advanced solutions.

Leading industry players such as BAE Systems, L3Harris Technologies, Northrop Grumman Corporation, Thales, and Collins Aerospace are adopting multi-pronged strategies to strengthen their market positions. These include ramping up R&D for modular avionics architectures, reinforcing cybersecurity across avionics networks, and securing long-term government contracts for platform-specific projects. Many are also forming joint ventures aimed at localizing production, optimizing costs, and shortening delivery timelines-paving the way for faster, smarter, and more secure defense aviation capabilities.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Trump administration tariffs analyisis
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (key components)
        • 3.2.2.1.1 Price volatility in key materials
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact (selling price)
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
      • 3.2.4.1 Supply chain reconfiguration
      • 3.2.4.2 Pricing and product strategies
      • 3.2.4.3 Policy engagement
    • 3.2.5 Outlook and future considerations
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Rapid innovation in sensor technologies coupled with AI driven data processing and automation
      • 3.3.1.2 Rising defense modernization budgets fuel procurement of advanced, interoperable avionics systems
      • 3.3.1.3 Growth of UAVs and autonomous platforms accelerates demand for specialized, precision enabled avionics
      • 3.3.1.4 Shift toward network centric warfare elevates the need for robust communication, sensor fusion, and data link capabilities
      • 3.3.1.5 Adoption of software defined, open architecture avionics facilitates rapid upgrades and multi platform integration
    • 3.3.2 Industry pitfalls and challenges
      • 3.3.2.1 High development and certification costs
      • 3.3.2.2 Geopolitical tensions and Tariff volatility disrupt global supply chains for critical components
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
  • 3.6 Technology landscape
  • 3.7 Future market trends
  • 3.8 Gap analysis
  • 3.9 Porter's analysis
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Type, 2021 - 2034 ($ Mn)

  • 5.1 Key trends
  • 5.2 Flight control system
  • 5.3 Communication system
  • 5.4 Navigation system
  • 5.5 Monitoring system
  • 5.6 Others

Chapter 6 Market Estimates and Forecast, By Platform, 2021 - 2034 ($ Mn)

  • 6.1 Key trends
  • 6.2 Fixed-wings
    • 6.2.1 Narrow body
    • 6.2.2 Wide -body
  • 6.3 Rotary wings
  • 6.4 Unmanned aerial vehicles (UAVs)

Chapter 7 Market Estimates and Forecast, By Point of Sale, 2021 - 2034 ($ Mn)

  • 7.1 Key trends
  • 7.2 OEM
  • 7.3 Aftermarkets

Chapter 8 Market Estimates and Forecast, By Fit, 2021 - 2034 ($ Mn)

  • 8.1 Key trends
  • 8.2 Retrofit
  • 8.3 Line-fit

Chapter 9 Market Estimates and Forecast, By Region, 2021 - 2034 ($ Mn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Netherlands
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Australia
    • 9.4.4 South Korea
    • 9.4.5 Japan
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 U.A.E.
    • 9.6.3 South Africa

Chapter 10 Company Profiles

  • 10.1 Astronics Corporation
  • 10.2 BAE Systems
  • 10.3 Collins Aerospace
  • 10.4 Curtiss-Wright
  • 10.5 Elbit System
  • 10.6 Garmin
  • 10.7 GE Aviation
  • 10.8 Honeywell
  • 10.9 L3Harris Technologies
  • 10.10 Leonardo SPA
  • 10.11 Lockheed Martin
  • 10.12 Northrop Grumman Corporation
  • 10.13 Scioteq
  • 10.14 Thales
  • 10.15 Universal Avionics