封面
市場調查報告書
商品編碼
1721524

人工智慧治理市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

AI Governance Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 172 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球人工智慧治理市場價值為 1.979 億美元,預計到 2034 年將以 49.2% 的複合年成長率成長,達到 66.3 億美元。隨著人工智慧在各個領域的迅速應用,組織在保護敏感資料和維持對人工智慧系統的控制方面面臨越來越大的挑戰。隨著人工智慧不斷影響核心業務功能,對治理框架的需求變得更加迫切,以防止資料濫用、模型偏差和未經授權的存取等風險。人工智慧治理在確保遵守道德標準、保持透明度以及在智慧系統中實現負責任的決策方面發揮著至關重要的作用。

人工智慧治理市場 - IMG1

雖然人工智慧驅動的工具可以透過詐欺檢測和自動威脅分析等應用來幫助保護數位基礎設施,但它們日益複雜的特點要求嚴格的監督。監管漏洞和潛在的道德違規行為會造成必須主動解決的漏洞。隨著人們對人工智慧系統完整性的擔憂日益加劇,企業認知到部署治理解決方案的重要性,這些解決方案不僅可以檢測風險,還可以提供有關演算法效能、偏見緩解和資料準確性的即時洞察。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 1.979億美元
預測值 66.3億美元
複合年成長率 49.2%

複雜的網路攻擊不斷增多,通常受到國家行為者的支持,這加劇了實施強力的人工智慧治理結構的迫切性。組織也開始利用人工智慧滲透測試,模擬真實世界的攻擊來偵測內部弱點。然而,如果沒有完善的治理協議,這些先進的防禦策略就有可能引入偏見和合規錯誤。人工智慧治理確保與道德、可解釋性和問責制等核心網路安全原則保持一致,幫助組織在人工智慧部署中保持可見度和控制力。

在市場區隔方面,組件格局分為解決方案與服務。 2024 年,解決方案領域將引領市場,佔據全球近 64% 的佔有率,並將在預測期內以超過 48% 的複合年成長率成長。這些平台整合了政策制定、實施和監控,為有效管理人工智慧系統提供了集中的框架。他們還支持使用先進的可解釋性工具來檢測和減少訓練資料和演算法中的偏差。這些解決方案透過旨在使開發人員和稽核人員能夠理解和追蹤 AI 產生的輸出的技術來強調可解釋性。

在部署方面,人工智慧治理市場分為雲端和本地模型。 2024 年,雲端運算領域佔據了約 72% 的市場佔有率,預計 2025 年至 2034 年期間的複合年成長率將超過 49.5%。人們對雲端託管平台日益成長的偏好源於其可擴展性、可存取性以及易於整合到現有工作流程中。基於雲端的 AI 治理工具有助於自動化合規任務、實現即時策略執行並簡化 AI 監控工作。雲端供應商還提供強大的安全功能,包括加密、存取控制和身分管理,以保護敏感的人工智慧資料免受外部威脅。

根據組織規模,市場分為大型企業和中小企業。由於大型企業在不同營運部門更廣泛地採用人工智慧,它們將在 2024 年佔據主導地位。這些企業通常會投資專門的人工智慧治理團隊來監督內部和外部框架內的整合、合規性和問責制。他們在標準化人工智慧道德實踐、確保系統負責任地部署並符合全球監管要求方面發揮關鍵作用。從效能監控到風險緩解,大型組織依賴治理結構來維護整個 AI 部署的完整性。

從地區來看,北美在 2024 年成為領先市場,光是美國就貢獻了近 7,500 萬美元,約佔北美佔有率的 86%。區域成長主要得益於各行業人工智慧部署的增加,以及不斷發展的監管框架和公眾對人工智慧倫理的認知。該地區的企業正在大力投資優先考慮透明度、審計能力以及遵守當地和國際標準的治理工具。

塑造人工智慧治理格局的主要公司包括凱捷、IBM、Alphabet、Meta Platforms、NTT DATA、微軟、甲骨文、SAP、Palantir Technologies 和 SAS Institute。這些供應商專注於自動化 AI 模型監督、將治理整合到 MLOps 中,並開發客製化框架以滿足特定行業的合規需求。他們還與監管機構合作,共同創建支持在全球市場上合乎道德和負責任地使用人工智慧的治理模式。

目錄

第1章:方法論與範圍

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
  • 供應商格局
    • 平台提供者
    • 軟體供應商
    • 服務提供者
    • 最終用途
  • 利潤率分析
  • 技術與創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管格局
  • 衝擊力
    • 成長動力
      • 全球網路安全事件發生率高
      • 對道德駭客和滲透測試的興趣日益濃厚
      • 資料安全和隱私問題日益嚴重
      • 道德人工智慧與物聯網科技的融合
    • 產業陷阱與挑戰
      • 實施成本高且資源需求大
      • 缺乏標準化的人工智慧治理框架
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第5章:市場估計與預測:按組件,2021 - 2034 年

  • 主要趨勢
  • 解決方案
    • 平台
    • 軟體工具
  • 服務
    • 諮詢
    • 一體化
    • 支援與維護

第6章:市場估計與預測:依部署模式,2021 - 2034 年

  • 主要趨勢
  • 本地

第7章:市場估計與預測:依組織規模,2021 - 2034 年

  • 主要趨勢
  • 大型企業
  • 中小企業

第8章:市場估計與預測:按應用,2021 - 2034 年

  • 主要趨勢
  • 金融服務業
  • 政府和國防
  • 醫療保健與生命科學
  • 媒體和娛樂
  • 資訊科技和電信
  • 汽車
  • 其他

第9章:市場估計與預測:按地區,2021 - 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
    • 北歐人
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 東南亞
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯
    • 南非

第10章:公司簡介

  • Alphabet
  • BigID
  • Capgemini
  • Dataiku
  • Deloitte
  • EY (Ernst & Young)
  • FICO
  • H2O.ai
  • IBM
  • KPMG
  • Meta Platforms
  • Microsoft
  • NTT DATA
  • Oracle
  • Palantir Technologies
  • PWC
  • SAP
  • SAS Institute
  • Stefanini
  • Teradata
簡介目錄
Product Code: 6015

The Global AI Governance Market was valued at USD 197.9 million in 2024 and is estimated to grow at a CAGR of 49.2% to reach USD 6.63 billion by 2034. With the rapid adoption of artificial intelligence across various sectors, organizations are facing increasing challenges in protecting sensitive data and maintaining control over AI-powered systems. As AI continues to influence core business functions, the need for governance frameworks becomes more urgent to safeguard against risks such as data misuse, model bias, and unauthorized access. AI governance plays a crucial role in ensuring compliance with ethical standards, maintaining transparency, and enabling responsible decision-making across intelligent systems.

AI Governance Market - IMG1

While AI-driven tools help secure digital infrastructures through applications like fraud detection and automated threat analysis, their growing complexity demands rigorous oversight. Regulatory gaps and the potential for ethical breaches create vulnerabilities that must be addressed proactively. With mounting concerns over the integrity of AI systems, businesses are recognizing the importance of deploying governance solutions that can not only detect risks but also provide real-time insights into algorithm performance, bias mitigation, and data accuracy.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$197.9 Million
Forecast Value$6.63 Billion
CAGR49.2%

The increase in sophisticated cyberattacks, often backed by state actors, has amplified the urgency to implement strong AI governance structures. Organizations are also beginning to leverage AI-enabled penetration testing, simulating real-world attacks to detect internal weaknesses. However, without solid governance protocols, these advanced defense strategies risk introducing bias and compliance errors. AI governance ensures alignment with core cybersecurity principles like ethics, explainability, and accountability, helping organizations maintain visibility and control in AI deployments.

In terms of market segmentation, the component landscape is divided into solutions and services. In 2024, the solution segment led the market, accounting for nearly 64% of the global share, and is set to grow at over 48% CAGR through the forecast period. These platforms integrate policy formulation, implementation, and monitoring, offering a centralized framework for managing AI systems effectively. They also support the detection and reduction of bias in training data and algorithms using advanced interpretability tools. These solutions emphasize explainability through technologies designed to make AI-generated outputs understandable and traceable for both developers and auditors.

When it comes to deployment, the AI governance market is segmented into cloud and on-premises models. In 2024, the cloud segment captured approximately 72% of the market and is projected to register a CAGR of over 49.5% between 2025 and 2034. The growing preference for cloud-hosted platforms stems from their scalability, accessibility, and ease of integration into existing workflows. Cloud-based AI governance tools help automate compliance tasks, enable real-time policy enforcement, and streamline AI monitoring efforts. Cloud providers also offer robust security features, including encryption, access controls, and identity management to protect sensitive AI data from external threats.

By organization size, the market is classified into large enterprises and SMEs. Large enterprises dominated the space in 2024 due to their broader AI adoption across diverse operational units. These businesses typically invest in dedicated AI governance teams that oversee integration, compliance, and accountability within internal and external frameworks. They play a pivotal role in standardizing ethical AI practices, ensuring systems are deployed responsibly and aligned with global regulatory mandates. From performance monitoring to risk mitigation, large organizations rely on governance structures to maintain integrity across AI deployments.

Regionally, North America emerged as a leading market in 2024, with the United States alone contributing nearly USD 75 million, representing around 86% of the North American share. The regional growth is largely driven by increased AI deployment across industries, supported by evolving regulatory frameworks and public awareness of AI ethics. Businesses in this region are investing heavily in governance tools that prioritize transparency, auditing capabilities, and compliance with local and international standards.

Key companies shaping the AI governance landscape include Capgemini, IBM, Alphabet, Meta Platforms, NTT DATA, Microsoft, Oracle, SAP, Palantir Technologies, and SAS Institute. These vendors are focusing on automating AI model oversight, integrating governance into MLOps, and developing tailored frameworks to match sector-specific compliance needs. They are also collaborating with regulatory authorities to co-create governance models that support ethical and responsible AI use across global markets.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
  • 1.2 Base estimates and calculations
    • 1.2.1 Base year calculation
    • 1.2.2 Key trends for market estimates
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Platform providers
    • 3.2.2 Software providers
    • 3.2.3 Service providers
    • 3.2.4 End use
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 High rate of cybersecurity events globally
      • 3.8.1.2 Proliferating interest towards ethical hacking and penetration testing
      • 3.8.1.3 Growing data security and privacy concerns
      • 3.8.1.4 Integration of ethical AI and IoT technology
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 High implementation costs & resource requirements
      • 3.8.2.2 Lack of standardized AI governance frameworks
  • 3.9 Growth potential analysis
  • 3.10 Porter’s analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 ($Bn)

  • 5.1 Key trends
  • 5.2 Solution
    • 5.2.1 Platform
    • 5.2.2 Software tools
  • 5.3 Service
    • 5.3.1 Consulting
    • 5.3.2 Integration
    • 5.3.3 Support & maintenance

Chapter 6 Market Estimates & Forecast, By Deployment Mode, 2021 - 2034 ($Bn)

  • 6.1 Key trends
  • 6.2 Cloud
  • 6.3 On-premises

Chapter 7 Market Estimates & Forecast, By Organization Size, 2021 - 2034 ($Bn)

  • 7.1 Key trends
  • 7.2 Large enterprise
  • 7.3 SME

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2034 ($Bn)

  • 8.1 Key trends
  • 8.2 BFSI
  • 8.3 Government & defense
  • 8.4 Healthcare & life sciences
  • 8.5 Media & entertainment
  • 8.6 IT & telecommunication
  • 8.7 Automotive
  • 8.8 Others

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
    • 9.3.7 Nordics
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Southeast Asia
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 Saudi Arabia
    • 9.6.3 South Africa

Chapter 10 Company Profiles

  • 10.1 Alphabet
  • 10.2 BigID
  • 10.3 Capgemini
  • 10.4 Dataiku
  • 10.5 Deloitte
  • 10.6 EY (Ernst & Young)
  • 10.7 FICO
  • 10.8 H2O.ai
  • 10.9 IBM
  • 10.10 KPMG
  • 10.11 Meta Platforms
  • 10.12 Microsoft
  • 10.13 NTT DATA
  • 10.14 Oracle
  • 10.15 Palantir Technologies
  • 10.16 PWC
  • 10.17 SAP
  • 10.18 SAS Institute
  • 10.19 Stefanini
  • 10.20 Teradata