封面
市場調查報告書
商品編碼
1721413

人工智慧包裝市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

Artificial Intelligent Packaging Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 170 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球人工智慧包裝市場價值為 24 億美元,預計到 2034 年將以 10.1% 的複合年成長率成長,達到 62 億美元。隨著全球包裝產業經歷數位轉型,人工智慧 (AI) 的整合已成為創新和效率的關鍵推動因素。越來越多的公司開始採用人工智慧解決方案來提高包裝準確性、改善即時決策並簡化營運工作流程。這種轉變的驅動力在於降低生產成本、減少環境影響以及滿足日益成長的智慧、客製化和永續包裝的需求。

人工智慧包裝市場 - IMG1

人工智慧技術正在食品飲料、製藥、化妝品和物流等不同行業中大規模應用。隨著電子商務的蓬勃發展以及客戶對包裝功能性、個人化和永續性的期望迅速成長,人工智慧提供了滿足這些不斷變化的需求的工具。人工智慧包裝系統可實現即時資料分析、增強預測能力並提供自動化功能,從而降低勞動力成本並提高包裝一致性。從智慧標籤和追蹤到自適應包裝設計,人工智慧從根本上改變了品牌與消費者互動和管理供應鏈的方式。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 24億美元
預測值 62億美元
複合年成長率 10.1%

市場根據技術進行細分,其中機器學習類別佔據最大佔有率,到 2024 年將達到 27.6%。這種主導地位源自於機器學習分析大量生產資料的能力不斷增強,使企業能夠提高營運績效、預測設備維護並最佳化資源配置。隨著機器學習的不斷發展,製造商正在利用它來增強異常檢測、減少浪費和需求預測,最終幫助提高生產力並降低成本。人工智慧在包裝領域的應用非常廣泛,包括品質檢測、智慧包裝、供應鏈最佳化以及包裝設計和客製化。

僅包裝設計和客製化領域在 2024 年就創造了 9.488 億美元的收入。這種擴張主要歸功於人工智慧提供客製化、美觀且永續的包裝解決方案的能力。品牌正在使用人工智慧工具來開發包裝,不僅符合消費者的喜好,而且還減少材料的使用,增強環境責任。此外,互動元素和2D碼等智慧功能等創新使品牌能夠與消費者即時互動,提高忠誠度並改善客戶旅程。

預計到 2034 年,美國人工智慧包裝市場規模將達到 21 億美元。自動化投資的增加以及人工智慧驅動技術的部署以加強供應鏈推動了市場的成長。永續包裝法規的強力推動和電子商務的快速成長進一步支持了智慧包裝系統的採用。美國各地的企業正在利用人工智慧來提高生產力、降低成本,並透過智慧包裝提供增強的消費者體驗。

全球人工智慧包裝產業的主要參與者包括 Otto Motors、ABB、Avathon、微軟公司、亞馬遜公司和 Neurala。這些公司策略性地專注於先進的自動化、機器學習和物聯網整合,以徹底改變包裝操作、改善即時監控、實現預測性維護並提供針對特定市場需求的高度客製化的包裝解決方案。

目錄

第1章:方法論與範圍

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
  • 產業衝擊力
    • 成長動力
      • 對永續和環保包裝解決方案的需求不斷成長,推動人工智慧的整合
      • 越來越多採用物聯網和感測器技術進行即時包裝最佳化
      • 提高供應鏈透明度和包裝可追溯性的需求日益成長
      • 機器學習演算法的進步加速了包裝自動化
    • 產業陷阱與挑戰
      • 包裝領域實施人工智慧的初始投資和營運成本較高
      • 對連網包裝環境中資料安全和隱私的擔憂
  • 成長潛力分析
  • 監管格局
  • 技術格局
  • 未來市場趨勢
  • 差距分析
  • 波特的分析
  • PESTEL分析

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 策略儀表板

第5章:市場估計與預測:按技術,2021 - 2034 年

  • 主要趨勢
  • 機器學習
  • 電腦視覺
  • 自然語言處理
  • 預測分析
  • 擴增實境/虛擬實境
  • 其他

第6章:市場估計與預測:按應用,2021 - 2034 年

  • 主要趨勢
  • 品質控制和檢驗
  • 包裝設計與客製化
  • 供應鏈最佳化
  • 智慧包裝

第7章:市場估計與預測:按最終用途產業,2021 - 2034 年

  • 主要趨勢
  • 食品和飲料
  • 製藥和醫療保健
  • 零售和消費品
  • 化妝品和個人護理
  • 汽車
  • 工業品
  • 其他

第8章:市場估計與預測:按地區,2021 - 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 荷蘭
  • 亞太地區
    • 中國
    • 印度
    • 澳洲
    • 韓國
    • 日本
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 南非

第9章:公司簡介

  • Ardagh Group
  • Augmentir
  • Avathon
  • Cognex
  • Georgia Pacific
  • Keyence
  • Landing AI
  • Microsoft Corporation
  • Midjourney Inc.
  • Neurala
  • Packsize
  • Systech (Markem-Imaje and Dover)
  • Tetra Pak
簡介目錄
Product Code: 13417

The Global Artificial Intelligent Packaging Market was valued at USD 2.4 billion in 2024 and is estimated to grow at a CAGR of 10.1% to reach USD 6.2 billion by 2034. As the global packaging industry experiences a digital transformation, the integration of artificial intelligence (AI) has emerged as a critical enabler of innovation and efficiency. Companies are increasingly turning to AI-powered solutions to enhance packaging accuracy, improve real-time decision-making, and streamline operational workflows. This shift is driven by the need to minimize production costs, reduce environmental impact, and cater to the rising demand for smart, customized, and sustainable packaging.

Artificial Intelligent Packaging Market - IMG1

AI technologies are being adopted at scale across diverse industries such as food & beverage, pharmaceuticals, cosmetics, and logistics. With e-commerce booming and customer expectations around packaging functionality, personalization, and sustainability growing rapidly, AI provides the tools to meet these evolving requirements. AI-powered packaging systems enable real-time data analysis, enhance predictive capabilities, and offer automation that drives down labor costs while elevating packaging consistency. From intelligent labeling and tracking to adaptive packaging design, AI is fundamentally transforming how brands engage with consumers and manage their supply chains.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$2.4 Billion
Forecast Value$6.2 Billion
CAGR10.1%

The market is segmented based on technology, with the machine learning category accounting for the largest share at 27.6% in 2024. This dominance stems from the growing ability of machine learning to analyze large volumes of production data, allowing businesses to enhance operational performance, predict equipment maintenance, and optimize resource allocation. As machine learning continues to evolve, manufacturers are leveraging it for enhanced anomaly detection, waste reduction, and demand forecasting, ultimately helping to increase productivity and cut costs. Applications of AI in packaging are extensive and include quality inspection, smart packaging, supply chain optimization, and packaging design and customization.

The packaging design and customization segment alone generated USD 948.8 million in 2024. This expansion is largely attributed to the capabilities of AI to deliver tailored, aesthetically compelling, and sustainable packaging solutions. Brands are using AI tools to develop packaging that not only aligns with consumer preferences but also reduces material usage, enhancing environmental responsibility. Additionally, innovations such as interactive elements and smart features like QR codes are allowing brands to foster real-time engagement with consumers, driving loyalty and improving the customer journey.

The U.S. Artificial Intelligent Packaging Market is expected to reach USD 2.1 billion by 2034. The market's growth is being propelled by rising automation investments and the deployment of AI-driven technologies to strengthen supply chains. A strong push for sustainable packaging regulations and the exponential growth of e-commerce further support the adoption of smart packaging systems. Businesses across the U.S. are tapping into AI to boost productivity, reduce costs, and deliver enhanced consumer experiences through intelligent packaging.

Key players in the Global Artificial Intelligent Packaging Industry include Otto Motors, ABB, Avathon, Microsoft Corporation, Amazon Inc., and Neurala. These companies are strategically focusing on advanced automation, machine learning, and IoT integration to revolutionize packaging operations, improve real-time monitoring, enable predictive maintenance, and offer highly customized packaging solutions tailored to specific market needs.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research Approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing demand for sustainable and eco-friendly packaging solutions driving AI integration
      • 3.2.1.2 Increasing adoption of IoT and sensor technologies for real-time packaging optimization
      • 3.2.1.3 Rising need for improved supply chain transparency and traceability in packaging
      • 3.2.1.4 Advancements in machine learning algorithms accelerating packaging automation
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High initial investment and operational costs for AI implementation in packaging
      • 3.2.2.2 Concerns over data security and privacy in connected packaging environments
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
  • 3.5 Technology landscape
  • 3.6 Future market trends
  • 3.7 Gap analysis
  • 3.8 Porter’s analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Technology, 2021 - 2034 ($ Mn)

  • 5.1 Key trends
  • 5.2 Machine learning
  • 5.3 Computer vision
  • 5.4 Natural language processing
  • 5.5 Predictive analysis
  • 5.6 AR/VR
  • 5.7 Others

Chapter 6 Market Estimates and Forecast, By Application, 2021 - 2034 ($ Mn)

  • 6.1 Key trends
  • 6.2 Quality control and inspection
  • 6.3 Packaging design and customization
  • 6.4 Supply chain optimization
  • 6.5 Smart packaging

Chapter 7 Market Estimates and Forecast, By End Use Industry, 2021 - 2034 ($ Mn)

  • 7.1 Key trends
  • 7.2 Food & beverage
  • 7.3 Pharmaceuticals & healthcare
  • 7.4 Retail & consumer goods
  • 7.5 Cosmetics & personal care
  • 7.6 Automotive
  • 7.7 Industrial goods
  • 7.8 Others

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 ($ Mn & Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Netherlands
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Australia
    • 8.4.4 South Korea
    • 8.4.5 Japan
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 Middle East and Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 U.A.E.
    • 8.6.3 South Africa

Chapter 9 Company Profiles

  • 9.1 Ardagh Group
  • 9.2 Augmentir
  • 9.3 Avathon
  • 9.4 Cognex
  • 9.5 Georgia Pacific
  • 9.6 Keyence
  • 9.7 Landing AI
  • 9.8 Microsoft Corporation
  • 9.9 Midjourney Inc.
  • 9.10 Neurala
  • 9.11 Packsize
  • 9.12 Systech (Markem-Imaje and Dover)
  • 9.13 Tetra Pak