封面
市場調查報告書
商品編碼
1684848

二氧化鈦奈米材料市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

Titanium Dioxide Nanomaterials Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 235 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球二氧化鈦奈米材料市場規模達到 220 億美元,預計 2025 年至 2034 年期間的複合年成長率為 5.5%。多個行業對這些先進材料的需求不斷成長,這可歸因於其卓越的性能,包括優異的光學品質、高化學穩定性和強的抗紫外線能力。這些獨特的特性使二氧化鈦奈米材料用途廣泛,促進了其在建築、汽車、醫療保健、化妝品和電子等領域的廣泛應用。

二氧化鈦奈米材料市場 - IMG1

全球基礎設施的擴張,加上對永續發展的不斷推動,進一步刺激了對高性能耐用材料的需求。隨著產業不斷創新,奈米技術和二氧化鈦等先進材料的採用預計將在塑造製造業和技術發展的未來方面發揮關鍵作用。新興經濟體快速工業化,促進了市場的成長,為供應商和製造商提供了新的機會。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 220億美元
預測值 376億美元
複合年成長率 5.5%

2024 年,二氧化鈦奈米材料市場的金紅石部分價值為 201 億美元,預計未來十年的複合年成長率為 5.3%。金紅石以其優異的光學性能而聞名,常用於塗料、塑膠和個人護理產品等領域。建築業和汽車業的不斷發展以及化妝品行業的快速成長推動了其需求的不斷成長。隨著人們轉向更美觀、更持久的產品,金紅石繼續在各個終端使用市場獲得關注,為整體市場成長做出重大貢獻。

氯化法在二氧化鈦奈米材料市場佔據主導地位,到 2024 年就佔了 89.1% 的市場。這種生產方法之所以受到青睞,是因為它能夠生產出具有一致尺寸和優異光學特性的高純度奈米顆粒。這些特性使得氯化物基二氧化鈦奈米材料在先進塗料、電子產品和化妝品等應用中不可或缺。隨著更嚴格的環境法規鼓勵採用更永續的生產技術,氯化物市場正在不斷發展,這得益於對環保製造流程的需求。此外,航太和汽車等產業對輕質耐用材料的需求日益成長,推動了氯化物基奈米材料的進一步應用。新興市場工業化和基礎設施建設的加速也在擴大這一領域的影響力和覆蓋範圍方面發揮著重要作用。

在美國,二氧化鈦奈米材料市場規模將在 2024 年達到 66 億美元,到 2034 年預計將以 5.7% 的複合年成長率成長。奈米技術在電子、醫療保健和再生能源等領域的快速發展是這一成長的主要驅動力。太陽能電池生產對二氧化鈦奈米材料的需求不斷增加,加上國家對環境永續性的關注,引發了該領域的持續創新。研發投資是確保美國在全球市場保持競爭優勢、鞏固在二氧化鈦奈米材料產業領先地位的關鍵。

目錄

第 1 章:方法論與範圍

  • 市場範圍和定義
  • 基礎估算與計算
  • 預測計算
  • 資料來源
    • 基本的
    • 次要
      • 付費來源
      • 公共資源

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
    • 影響價值鏈的因素
    • 利潤率分析
    • 中斷
    • 未來展望
    • 製造商
    • 經銷商
  • 供應商概況
  • 利潤率分析
  • 重要新聞及舉措
  • 監管格局
  • 衝擊力
    • 成長動力
      • 電子和光電子領域需求不斷成長
      • 醫療保健和生物技術領域的應用日益增多
      • 環境永續性和嚴格法規
    • 產業陷阱與挑戰
      • 與奈米顆粒暴露有關的健康和環境問題
  • 成長潛力分析
  • 波特的分析
  • PESTEL 分析

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第5章:市場估計與預測:依等級,2021-2034 年

  • 主要趨勢
  • 金紅石
  • 銳鈦礦

第 6 章:市場估計與預測:按工藝,2021 年至 2034 年

  • 主要趨勢
  • 氯化物
  • 硫酸鹽

第 7 章:市場估計與預測:按應用,2021 年至 2034 年

  • 主要趨勢
  • 油漆和塗料
  • 塑膠
  • 紙和紙漿
  • 印刷油墨
  • 其他

第 8 章:市場估計與預測:按地區,2021 年至 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲
  • 拉丁美洲
    • 巴西
    • 墨西哥
  • 中東及非洲
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第9章:公司簡介

  • Altairnano
  • American Elements
  • Catalysis
  • CINKARNA Celje
  • Cristal
  • DuPont
  • Evonik Industries
  • Huntsman International
  • Ishihara Sangyo Kaisha
  • Kronos Worldwide
  • Nanoptek
  • Reinste Nano Ventures
  • Sakai Chemical Industry
  • Showa Denko
  • Tronox Holdings
簡介目錄
Product Code: 7091

The Global Titanium Dioxide Nanomaterials Market reached USD 22 billion in 2024 and is estimated to expand at a projected CAGR of 5.5% from 2025 to 2034. The growing demand for these advanced materials across multiple industries can be attributed to their remarkable properties, including excellent optical qualities, high chemical stability, and strong UV resistance. These unique characteristics make titanium dioxide nanomaterials highly versatile, fostering their widespread use in sectors like construction, automotive, healthcare, cosmetics, and electronics.

Titanium Dioxide Nanomaterials Market - IMG1

The expansion of the global infrastructure, coupled with an increasing push towards sustainability, has further fueled the demand for high-performance, durable materials. As industries continue to innovate, the adoption of nanotechnology and advanced materials like titanium dioxide is expected to play a crucial role in shaping the future of manufacturing and technological development. Emerging economies, with their rapid industrialization, are contributing to the market's growth, offering new opportunities for suppliers and manufacturers alike.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$22 Billion
Forecast Value$37.6 Billion
CAGR5.5%

The rutile segment of the titanium dioxide nanomaterials market was valued at USD 20.1 billion in 2024 and is forecast to grow at a CAGR of 5.3% during the upcoming decade. Rutile, known for its superior optical properties, is commonly used in applications such as coatings, plastics, and personal care products. Its increasing demand is driven by the expanding construction and automotive industries, as well as the rapidly growing cosmetics sector. With a shift toward more aesthetic, long-lasting products, rutile continues to gain traction across various end-use markets, contributing significantly to overall market growth.

The chloride method dominated the titanium dioxide nanomaterials market, holding a commanding 89.1% market share in 2024. This production method is preferred for its ability to create high-purity nanoparticles that exhibit consistent size and excellent optical characteristics. These qualities make chloride-based titanium dioxide nanomaterials indispensable in applications like advanced coatings, electronics, and cosmetics. With stricter environmental regulations encouraging more sustainable production techniques, the chloride segment is evolving, driven by the demand for environmentally friendly manufacturing processes. In addition, the growing need for lightweight and durable materials in industries like aerospace and automotive is fueling further adoption of chloride-based nanomaterials. The acceleration of industrialization and infrastructure development in emerging markets is also playing a significant role in expanding the reach and impact of this segment.

In the United States, the titanium dioxide nanomaterials market reached USD 6.6 billion in 2024 and is set to grow at a CAGR of 5.7% through 2034. The rapid advancement of nanotechnology in sectors like electronics, healthcare, and renewable energy is a major driver of this growth. The increasing demand for titanium dioxide nanomaterials in solar cell production, combined with the nation's focus on environmental sustainability, is sparking ongoing innovation in this field. Investments in research and development are key to ensuring that the U.S. maintains a competitive edge in the global market, strengthening its position as a leading player in the titanium dioxide nanomaterials industry.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculations
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021-2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Supplier landscape
  • 3.3 Profit margin analysis
  • 3.4 Key news & initiatives
  • 3.5 Regulatory landscape
  • 3.6 Impact forces
    • 3.6.1 Growth drivers
      • 3.6.1.1 Increasing demand in electronics and optoelectronics
      • 3.6.1.2 Growing applications in healthcare and biotechnology
      • 3.6.1.3 Environmental sustainability and stringent regulations
    • 3.6.2 Industry pitfalls & challenges
      • 3.6.2.1 Health and environmental concerns regarding nanoparticle exposure
  • 3.7 Growth potential analysis
  • 3.8 Porter’s analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Grade, 2021-2034 (USD Billion) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Rutile
  • 5.3 Anatase

Chapter 6 Market Estimates & Forecast, By Process, 2021-2034 (USD Billion) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Chloride
  • 6.3 Sulfate

Chapter 7 Market Estimates & Forecast, By Application, 2021-2034 (USD Billion) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Paints & coatings
  • 7.3 Plastic
  • 7.4 Paper and pulp
  • 7.5 Printing inks
  • 7.6 Others

Chapter 8 Market Estimates & Forecast, By Region, 2021-2034 (USD Billion) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 UK
    • 8.3.2 Germany
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Russia
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 South Korea
    • 8.4.5 Australia
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
  • 8.6 MEA
    • 8.6.1 South Africa
    • 8.6.2 Saudi Arabia
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 Altairnano
  • 9.2 American Elements
  • 9.3 Catalysis
  • 9.4 CINKARNA Celje
  • 9.5 Cristal
  • 9.6 DuPont
  • 9.7 Evonik Industries
  • 9.8 Huntsman International
  • 9.9 Ishihara Sangyo Kaisha
  • 9.10 Kronos Worldwide
  • 9.11 Nanoptek
  • 9.12 Reinste Nano Ventures
  • 9.13 Sakai Chemical Industry
  • 9.14 Showa Denko
  • 9.15 Tronox Holdings