封面
市場調查報告書
商品編碼
1532568

蒸汽甲烷重整液氫市場規模 - 按分佈(管道、低溫儲槽)、最終用途(運輸、化學品)、區域展望與預測,2024 - 2032 年

Steam Methane Reforming Liquid Hydrogen Market Size - By Distribution (Pipelines, Cryogenic Tanks), By End Use (Transportation, Chemicals), Regional Outlook & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 80 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

由於領先公司的技術進步,2024年至2032年全球蒸汽甲烷重整液氫市場的複合年成長率將達到6.2%。 SMR 仍然是生產氫氣的主要方法,利用天然氣產生氫氣和二氧化碳。最近的進展集中在提高流程的效率和永續性、減少能源消耗並最大限度地減少碳排放。領先企業正在投資先進催化劑和熱整合技術等創新技術,以最佳化重整製程並降低生產成本。例如,2023 年 5 月,Proteum Energy 創建了一項名為蒸汽非甲烷重整 (SnMR) 的創新氫氣生產技術,並為其註冊了商標和專利。該技術透過重整和改善各種非甲烷和含氧烴原料的環境特性來提高氫氣產量。

隨著各行業尋求更清潔的能源儲存和燃料替代品,這些改進正在推動對液態氫的需求。此外,捕獲和利用二氧化碳排放方面的技術進步支持更廣泛的氣候目標,與全球轉型為低碳能源系統的努力保持一致。隨著這些技術的發展,SMR液氫市場有望大幅成長,反映出工業和環境對永續氫解決方案的日益關注。

蒸汽甲烷重整液氫產業的整體價值根據分佈、最終用途和地區進行分類。

根據分佈情況,低溫儲槽領域的蒸汽甲烷重整液氫市場收入將在2024年至2032年實現令人稱讚的複合年成長率。關重要。隨著各產業尋求擴大能源和工業應用的氫基礎設施,對可靠、大容量儲存解決方案的需求不斷成長。低溫儲罐設計的創新提高了儲存效率、降低了成本並增強了安全性,從而促進了液態氫的更廣泛採用。這種整合支持氫作為清潔能源的擴展,並推動 SMR 生產的液氫市場的成長。

就最終用途而言,從2024年到2032年,化學品領域將出現顯著成長。隨著化學產業尋求提高生產效率和減少碳排放,SMR 衍生的液氫提供了更清潔、更有效率的解決方案。經濟地生產高純度氫氣的能力支持該行業轉向更永續的實踐。因此,液氫在化學應用中的使用增加正在推動市場成長,反映了該行業對創新和環境責任的承諾。

歐洲蒸汽甲烷重整液氫市場從2024年到2032年將呈現顯著的複合年成長率。領域。由於其效率和可擴展性,SMR 仍然是生產氫氣的主要方法。歐洲對氫基礎設施的投資,加上支持性政策和激勵措施,正在加速採用SMR生產的液態氫。這一趨勢反映了歐洲對減少溫室氣體排放和向綠色能源經濟轉型的承諾。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統
  • 監管環境
  • 產業影響力
    • 成長動力
    • 產業陷阱與挑戰
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 戰略儀表板
  • 創新與科技格局

第 5 章:市場規模與預測:按分佈分類,2021 - 2032

  • 主要趨勢
  • 管道
  • 低溫儲罐

第 6 章:市場規模與預測:依最終用途,2021 - 2032 年

  • 主要趨勢
  • 運輸
  • 化學品
  • 其他

第 7 章:市場規模與預測:按地區分類,2021 - 2032 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲
  • 世界其他地區

第 8 章:公司簡介

  • Air Liquide
  • Air Products and Chemicals, Inc.
  • Ballard Power Systems Inc
  • Chart Industries
  • ENGIE
  • HyGear
  • Iwatani Corporation
  • Linde Plc
  • Matheson Tri-Gas
  • Praxair Technology, Inc.
  • Reliance Industries
  • Shell Plc
簡介目錄
Product Code: 9623

Global Steam Methane Reforming Liquid Hydrogen Market will witness 6.2% CAGR between 2024 and 2032 due to technological advances from leading companies. SMR remains a predominant method for producing hydrogen, leveraging natural gas to generate hydrogen and carbon dioxide. Recent advancements have focused on enhancing the efficiency and sustainability of this process, reducing energy consumption, and minimizing carbon emissions. Leading firms are investing in innovative technologies, such as advanced catalysts and heat integration techniques, to optimize the reforming process and lower production costs. For instance, in May 2023, Proteum Energy created, trademarked, and patented an innovative hydrogen production technology known as Steam non-methane Reforming (SnMR). This technology-enhanced hydrogen production by reforming and improving the environmental characteristics of various non-methane and oxygenated hydrocarbon feedstocks.

These improvements are driving the demand for liquid hydrogen as industries seek cleaner alternatives for energy storage and fuel. Additionally, technological progress in capturing and utilizing CO2 emissions supports broader climate goals, aligning with global efforts to transition to low-carbon energy systems. As these technologies evolve, the SMR liquid hydrogen market is poised for substantial growth, reflecting an increasing industrial and environmental focus on sustainable hydrogen solutions.

The overall Steam Methane Reforming Liquid Hydrogen Industry value is classified based on the distribution, end-use, and region.

Based on distribution, the steam methane reforming liquid hydrogen market revenue from the cryogenic tanks segment will register a commendable CAGR from 2024 to 2032. Cryogenic tanks are crucial for efficiently storing and transporting liquid hydrogen at extremely low temperatures. As industries seek to expand their hydrogen infrastructure for energy and industrial applications, the need for reliable, high-capacity storage solutions grows. Innovations in cryogenic tank design improve storage efficiency, reduce costs, and enhance safety, facilitating the wider adoption of liquid hydrogen. This integration supports the expansion of hydrogen as a clean energy source and drives market growth for SMR-produced liquid hydrogen.

In terms of end-use, the chemicals segment will witness an appreciable growth from 2024 to 2032. Hydrogen plays a critical role in various chemical processes, including ammonia synthesis for fertilizers and hydrocracking in petroleum refining. As the chemical sector seeks to enhance production efficiency and reduce carbon emissions, SMR-derived liquid hydrogen offers a cleaner and more efficient solution. The ability to produce high-purity hydrogen economically supports the industry's shift toward more sustainable practices. Consequently, the increased use of liquid hydrogen in chemical applications is driving market growth, reflecting the industry's commitment to innovation and environmental responsibility.

Europe steam methane reforming liquid hydrogen market will exhibit a notable CAGR from 2024 to 2032. European countries are increasingly adopting hydrogen as a key component in their decarbonization strategies, particularly for industrial applications and transportation. SMR remains a major method for producing hydrogen due to its efficiency and scalability. Europe's investments in hydrogen infrastructure, coupled with supportive policies and incentives, are accelerating the adoption of SMR-produced liquid hydrogen. This trend reflects Europe's commitment to reducing greenhouse gas emissions and transitioning to a greener energy economy.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
  • 1.2 Base estimates & calculations
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL analysis

Chapter 4 Competitive landscape, 2023

  • 4.1 Introduction
  • 4.2 Strategic dashboard
  • 4.3 Innovation & technology landscape

Chapter 5 Market Size and Forecast, By Distribution, 2021 - 2032 (USD Billion & MT)

  • 5.1 Key trends
  • 5.2 Pipelines
  • 5.3 Cryogenic tanks

Chapter 6 Market Size and Forecast, By End Use, 2021 - 2032 (USD Billion & MT)

  • 6.1 Key trends
  • 6.2 Transportation
  • 6.3 Chemicals
  • 6.4 Others

Chapter 7 Market Size and Forecast, By Region, 2021 - 2032 (USD Billion & MT)

  • 7.1 Key trends
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 UK
    • 7.3.3 France
    • 7.3.4 Italy
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 India
    • 7.4.3 Japan
    • 7.4.4 South Korea
    • 7.4.5 Australia
  • 7.5 Rest of World

Chapter 8 Company Profiles

  • 8.1 Air Liquide
  • 8.2 Air Products and Chemicals, Inc.
  • 8.3 Ballard Power Systems Inc
  • 8.4 Chart Industries
  • 8.5 ENGIE
  • 8.6 HyGear
  • 8.7 Iwatani Corporation
  • 8.8 Linde Plc
  • 8.9 Matheson Tri-Gas
  • 8.10 Praxair Technology, Inc.
  • 8.11 Reliance Industries
  • 8.12 Shell Plc