![]() |
市場調查報告書
商品編碼
1892079
知識經濟轉型,2025-2035年Knowledge Economy Transformations, 2025-2035 |
||||||
充分利用人力資本、數位基礎設施和人工智慧(HiDiAi),塑造未來知識經濟
全球知識經濟正處於轉型關鍵階段。未來十年的成長將取決於人力資本、數位基礎設施和人工智慧(AI)的結合。這三大要素構成了Frost & Sullivan的HiDiAi框架。從人工智慧驅動的生產力轉型到人口結構變化和對數位獨立的追求,各國經濟改變知識的創造、規模和收益化方式。
在此轉型過程中,各國政府正大力發展STEM(科學、技術、工程和數學)人才,企業正積極採用智慧製造和現代專業服務,金融體係也透過數位互聯互通變得更加包容。到2035年,那些認知到高數位化和人工智慧(HiDiAi)各組成部分互聯互通的國家將加速創新,創造更多價值,並建構更強大的經濟體。
最新的建議檢驗於2035年將重塑知識經濟的關鍵力量、技術促進因素和政策工具。這些建議探討了企業培訓專案如何彌補人才缺口,知識型供應鏈和智慧技術如何改變產業競爭格局,以及人機協作在管治和商業領域的發展趨勢。此外,建議還引進了「知識密集度評分」,該評分基於高知高智商(HiDiAi)要素對各行業進行評估,目的是幫助政策制定者和企業識別未來的領導者和落後者。
隨著經濟體日益知識主導和相互關聯,國家宏觀經濟的成功將需要從傳統的產業策略轉向整合人力、數位和人工智慧的系統。那些及早採取行動的國家、企業和投資者將成為下一代全球成長模式的核心。
主要主題:
本次調查的目的
知識類型
顛覆性技術
原因
人工智慧、自動化、雲端基礎設施和區塊鏈領域的突破改變知識的創造、交換和商業化方式。企業採用人工智慧的比例將從2019年的20%上升到2023年的50%以上,將加速生產力提升,並重塑服務、研發、法律、醫療和教育等領域的價值鏈。運算能力、資料可用性和開放原始碼創新的整合,使得先進工具能夠大規模應用。
Frost的觀點
企業需要建構人工智慧、雲端運算和資料工程的內部能力,開發能夠使其服務和產品脫穎而出的獨特應用,而不僅僅是簡單地採用工具。例如,Siemens將人工智慧嵌入其工業軟體中,用於預測性維護;Tata Consultancy Services則推出了一套人工智慧雲端套件,以加速企業專屬知識解決方案的開發。OECD的資料顯示,投資研發和數位化技能提升的企業,在五年內生產力成長可提高30%至50%。
地緣政治動盪
原因
全球管治碎片化、保護主義抬頭以及資料在地化法律阻礙全球思想、人才和數位服務的流動。超過70個國家已經頒布或起草跨境資料法規,而移民限制和數位主權問題也限制人才流動。這些變化重新定義知識的創造、儲存和獲取方式及地點。
Frost & Sullivan的觀點
企業需要將其數位化營運區域化,並分散其創新中心,以確保跨境資料彈性。 SAP 和Oracle擴展其區域雲端中心,以遵守歐盟、印度和中東的資料在地化法律。企業應建立跨司法管轄區的研發策略和具彈性的端到端安全指導基礎設施,以因應地緣政治動盪造成的單點故障。
壓縮客戶價值鏈
原因
科技簡化知識服務的獲取途徑,減少中間環節,並實現與客戶的直接互動。全球企業正擴大透過數位化自助服務和人工智慧輔助平台提供諮詢、研發、法律和IT服務。智慧合約、專家網路和模組化數位化交付縮短B2B知識服務(例如法律諮詢、人力資源、培訓)的交易時間。
Frost的觀點
按需、個人化、自助式知識解決方案的興起加速諮詢、教育、研發、法律服務和軟體開發等行業的轉型。傳統企業正面臨來自敏捷型企業的衝擊,這些企業能夠即時獲得專業知識、自動化工具和分散式問題解決模型。這種轉變凸顯了理解知識服務在全球經濟中如何被分解和重新分配的迫切性。
成長促進因素
成長限制因素
Leveraging Human Capital, Digital Infrastructure, and AI (HiDiAi) to Shape Future Knowledge Economies
The global knowledge economy is going through a decisive phase of transformation. In the next decade, growth will depend on the combination of human talent, digital infrastructure, and artificial intelligence (AI). These three components form Frost & Sullivan's HiDiAi framework. From productivity changes driven by AI to population shifts and the quest for digital independence, economies are changing how knowledge is created, scaled, and monetized.
During this transition, governments are encouraging the development of STEM talent, companies are adopting smart manufacturing and modern professional services, and financial systems are enhancing inclusion through digital connections. Countries that find ways to overlap the HiDiAi components will speed up innovation, create more value, and build stronger economies by 2035.
Our latest thought leadership examines the major forces, technology drivers, and policy tools that are reshaping the knowledge economy through 2035. We look at how corporate training programs are closing talent gaps, how knowledge-based supply chains and smart technology are changing industrial competition, and how human-AI collaboration is developing in governance and business. We also introduce Knowledge Intensity Scores, which measure industries based on the HiDiAi components, to enable policymakers and businesses to identify future leaders and laggards.
As economies grow more knowledge-driven and interconnected, country macroeconomic success will require a shift from traditional industrial strategies to integrated human, digital, and AI systems. Countries, companies, and investors that take action early will place themselves at the center of the next global growth model.
Key Themes:
Objectives of the Study
Types of Knowledge
Disruptive Technologies
Why
Breakthroughs in AI, automation, cloud infrastructure, and blockchain are transforming how knowledge is created, exchanged, and commercialized. AI adoption in enterprises rose from 20% in 2019 to over 50% in 2023, accelerating productivity gains and redefining value chains in services, R&D, legal, healthcare, and education. The convergence of computing power, data availability, and open-source innovation is making advanced tools accessible at scale.
Frost Perspective
Firms must build internal capabilities in AI, cloud, and data engineering, not just adopt tools, but develop proprietary applications that differentiate services and offerings. For instance, Siemens is embedding AI into industrial software for predictive maintenance, while Tata Consultancy Services has launched its AI-Cloud suite to accelerate enterprise-specific knowledge solutions. According to the OECD, firms that invest in R&D and digital upskilling report 30-50% higher productivity growth over five years.
Geopolitical Chaos
Why
Fragmentation in global governance, rising protectionsm, and data localization laws are disrupting the global flow of ideas, talent, and digital services. Over 70 countries have enacted or drafted cross-border data regulations, and talent mobility is tightening due to immigration restrictions and digital sovereignty concerns. These shifts are redefining how and where knowledge can be created, stored, and accessed.
Frost Perspective
Firms must regionalize their digital operations, diversify innovation hubs to secure cross-border data resilience. SAP and Oracle have expanded regional cloud centers to comply with data localization laws in the EU, India, and the Middle East. Companies should establish multi-jurisdictional R&D strategies and resilient end-to-end safe-guild infrastructure to address single-point failure from geopolitical disruption.
Customer Value Chain Compression
Why
Technology is streamlining access to knowledge services, reducing the role of intermediaries, and enabling direct customer engagement. Global enterprises are increasingly delivering consulting, R&D, legal, and IT services through digital self-service or AI-assisted platforms. Transaction times for B2B knowledge services (e.g., legal advice, HR, training) are shrinking due to smart contracts, expert networks, and modular digital delivery.
Frost Perspective
The rise of on-demand, personalized, and self-service knowledge solutions is accelerating change in consulting, education, R&D, legal services, and software development. Traditional firms face disruption from agile players offering instant access to expertise, automation tools, and decentralized problem-solving models. This shift underscores the urgency of mapping how knowledge services are being unbundled and redistributed in the global economy.
Growth Drivers
Growth Restraints