封面
市場調查報告書
商品編碼
1883961

軟體定義卡車市場:北美和歐洲(2024-2040 年)

Software-Defined Truck Market, North America and Europe, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 42 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

受電氣化和互聯化的驅動,軟體定義卡車經歷變革性成長。

軟體定義卡車是一種將車輛功能分離為硬體層和軟體層的車輛設計,它允許從一個或多個領域進行車輛功能更新、車隊管理、雲端基礎的分析以及無線軟體更新。與硬體配置固定、幾乎沒有升級空間的傳統車輛不同,軟體定義卡車有望持續改進車輛功能、增強適應性和提高生命週期靈活性。軟體定義卡車是商用車設計領域的一種新方法,它透過模組化軟體而非固定硬體配置來管理和更改基本功能。

Frost & Sullivan發布了一份關於從硬體定義卡車向軟體定義卡車過渡的架構、營運和經濟可行性研究報告。本報告檢驗了軟體定義方法在業界的應用,識別了目前的軟體平台,並探討了推動軟體定義生態系統發展的因素,例如增強的防碰撞能力和向集中式運算系統的遷移。本報告還分析了軟體定義卡車面臨的挑戰,包括成本、安全性和隱私問題。此外,本研究還檢視了原始設備製造商(OEM)、一級供應商和車隊營運商在從基於硬體的開發生命週期過渡到客製化的軟體檢驗生命週期過程中所受到的持續影響。

三大關鍵策略挑戰對軟體定義卡車運輸產業的影響

變革性大趨勢

背景

  • 卡車運輸業正處於關鍵的十字路口,面臨日益成長的營運效率提升需求、更嚴格的環境法規、不斷變化的物流模式以及不斷提高的安全要求。這些因素推動數位化整合、互聯互通、自動化、電氣化和軟體定義卡車的發展。

Frost的觀點

  • 卡車製造商和車隊營運商正開始採用軟體定義車隊,實現車輛的持續開發。這將確保預測性維護和更有效率的車隊營運,最佳化路線規劃,並支援空中下載(OTA)更新。雖然許多卡車運輸公司仍處於技術應用的早期階段,但相關功能穩步湧現。

顛覆性技術

原因

  • 軟體、車載運算能力、先進遠端資訊處理技術和人工智慧(AI)技術的進步迅速加速軟體定義卡車市場的成長。下一代卡車將比以往任何時候都更加靈活、自主和高效。

Frost的觀點

  • 儘管中間合作夥伴仍面臨諸多障礙,但技術提供者和供應商的角色也將變得非常重要。包括軟體、雲端服務和人工智慧在內的技術發展將影響下一代卡車的設計和部署方式。

內部挑戰

原因

  • 致力於軟體和數位技術的新公司進入卡車運輸行業,它們往往透過減少開發和實施新解決方案的傳統障礙來獲得優勢。

Frost的觀點

  • 到2030年,大多數主流卡車製造商將在其卡車車型中提供廣泛的軟體定義功能。這些功能可能包括可自訂的軟體包和訂閱服務,這將帶來持續的收入並加深客戶關係。

主要競爭對手

  • 北美洲
    • Freightliner
    • Western Star
    • Rizon
    • Volvo
    • Mack
    • Kenworth
    • Peterbilt
    • International
    • Hino
    • Isuzu
    • Tesla
  • 歐洲
    • Mercedes Benz
    • Volvo
    • Renault
    • Scania
    • MAN
    • DAF
    • IVECO
    • Fuso
    • Tesla

成長促進因素

集中式運算架構

從多個分散式電控系統(ECU)向集中式運算平台的過渡是軟體定義卡車的基礎。集中化能夠匯集運算資源,更快地處理大規模的資料集,簡化軟體升級和發布流程,並允許整合更廣泛的功能。汽車製造商(OEM)開發可擴展的模組化架構,以支援汽車平臺的長期永續性。

改良的防碰撞性能

卡車駕駛,尤其是遠距卡車駕駛,是一項極其艱苦的工作。駕駛人容易出現疏忽大意以及在緊急情況下反應遲緩等問題。碰撞避免技術能夠幫助汽車製造商提升安全性,尤其對於卡車而言,因為卡車是造成道路交通事故死亡的主要原因之一。

促進法規

為了減少交通事故死亡人數並提高車輛安全性,歐洲監管機構正推動強制實施某些高級駕駛輔助系統(ADAS)功能和安全設備,例如自動緊急煞車系統(AEBS)和車道偏離預警系統(LDW)。關於採用高級 ADAS 功能的政策指南將指南市場參與企業將這些功能整合到其未來的卡車平台中。

感測器套件開發

視覺增強和感測器套件技術的進步將使ADAS比前幾代產品更加可靠。

成長限制因素

  • 性價比高
  • 所有權成本
  • 法規結構不明確
  • 功能整合

目錄

成長環境:軟體定義卡車轉型

  • 為什麼成長變得越來越困難
  • 策略要務
  • 三大策略要務對軟體定義卡車運輸產業的影響

軟體定義的卡車生態系統

  • 分析範圍
  • 區隔
  • 主要競爭對手

軟體定義賽道成長促進因素

  • 成長指標
  • 成長促進因素
  • 成長限制因素
  • 價值因素預測考量
  • 價值促進因素:軟體定義軌道
  • 軟體定義卡車的基礎層
  • 軟體定義軌道的核心要素
  • 製造方式:傳統卡車與軟體定義卡車
  • OEM特定軟體開發方法
  • 軟體定義軌道戰略影響領域

電子電氣架構和組件開發

  • 軟體定義卡車中電子電氣架構的演進
  • 綜合功能模組:軟體定義軌道
  • 軟體定義軌道中的技術採納階段
  • 動力傳動系統 - 軟體定義卡車的發展趨勢
  • 軟體定義卡車中的線控技術概述
  • 軟體定義卡車應用的適用性和普及性
  • 影響軟體定義軌道用例的因素
  • 軟體定義的卡車領域影響分析
  • 軟體定義卡車的潛在收入模式
  • 車隊所有者影響領域:軟體定義卡車

目前軟體定義方向概述

  • 綜合分析:Flexis Mobility
  • 綜合分析:Ree Automotive
  • 全面分析:Tesla Semi
  • 現有軟體定義卡車OEM廠商比較分析

OEM軟體定義策略

  • Daimler:軟體定義策略
  • Volvo:軟體定義策略
  • Traton:軟體定義策略
  • Paccar:軟體定義戰略
  • Hyundai:軟體定義戰略

網路安全框架與監管

  • 軟體定義軌道上的網路安全威脅空間
  • 影響軟體定義卡車網路安全的關鍵因素
  • 軟體定義軌道中的網路安全組件類型
  • 影響軟體定義卡車網路安全的法規

軟體定義領域的成長機會

  • 成長機會1:科技進步
  • 成長機會2:軟體生態系統
  • 成長機會3:監理合規

附錄與後續步驟

簡介目錄
Product Code: PFG6-42

Software-defined Trucks are Experiencing Transformational Growth due to Electrification and Connectivity

Software-defined trucks are vehicles designed with hardware-software layers that decouple the capabilities of the vehicle, thus allowing for updates to vehicle features, fleet management, and cloud-based analytics, as well as over-the-air software updates from one or several domains. Rather than being composed of fixed hardware mechanisms with little or no room for upgrades, software-defined trucks have the potential to support ongoing improvements in functionality for vehicles, adaptive mechanisms, and lifecycle flexibility. Software-defined trucks represent a new approach in the engineering of commercial vehicles, where base functionality can be managed and modified through modular software instead of fixed hardware configurations.

Frost & Sullivan presents a feasibility study on the architecture, operations, and economics of transitioning from hardware-defined to software-defined trucks. The report examines implementations of software-defined approaches in the industry, highlights the current software platforms, and explores the enablers for a software-defined ecosystem, such as enhanced crash avoidance features and a shift to centralized computing systems. It also examines challenges associated with software-defined trucks, like cost, security, and privacy concerns. The study further examines continued implications for original equipment manufacturers (OEMs), Tier I suppliers, and fleets as they cultivate their development life cycles from a hardware-based to a tailored software-defined cycle.

The Impact of the Top 3 Strategic Imperatives on the Software-Defined Truck Industry

Transformative Megatrends

Why

  • The trucking industry is at a critical juncture, facing increasing demands for operational efficiency along with stricter environmental regulations, changing logistics patterns, and enhanced safety requirements. These factors are driving the industry towards the development of software-defined trucks that are more digitally integrated, better connected, automated, and electric.

Frost Perspective

  • Truck manufacturers and fleet operators will start to deploy software-defined fleets, allowing for continuous development of their vehicles, which ensure enhanced predictive maintenance and fleet operations, better routing, and over-the-air (OTA) update capabilities. While many trucking companies are early in the technology adoption phase, the capabilities are emerging.

Disruptive Technologies

Why

  • Software advances, onboard computer power, advanced telematics, and artificial intelligence (AI) capabilities are rapidly accelerating growth in the software-defined truck market. Next-gen trucks will be more flexible, autonomous, and efficient than ever before.

Frost Perspective

  • While there are still significant hurdles with intermediary partners, the role of technology providers and suppliers will also become critical. The development of technologies that consist of software, cloud services, and AI will influence how next-generation trucks are designed and deployed.

Internal Challenges

Why

  • New companies focused on software and digital technology are entering the trucking industry, often gaining an advantage due to fewer legacy obstacles in developing and adopting new solutions.

Frost Perspective

  • By 2030, most mainstream truck manufacturers will offer a broad variety of software-defined features in their truck models. The offerings will likely include configurable software packages and subscription services, resulting in annuities and deeper relationships.

Key Competitors

  • North America
    • Freightliner
    • Western Star
    • Rizon
    • Volvo
    • Mack
    • Kenworth
    • Peterbilt
    • International
    • Hino
    • Isuzu
    • Tesla
  • Europe
    • Mercedes Benz
    • Volvo
    • Renault
    • Scania
    • MAN
    • DAF
    • IVECO
    • Fuso
    • Tesla

Growth Drivers

Centralized Compute Architectures

The shift from multiple distributed electronic control units (ECUs) to a centralized computing platform is the foundation of Software-Defined Trucks. With centralization, computing resources can be pooled to process larger data sets more quickly, unlock the benefits of simpler software upgrades and releases, and allow for a broader range of features to be integrated. Original equipment manufacturers (OEMs) are developing scalable, modular architectures to support the long-term viability of vehicle platforms.

Better Crash Avoidance

Truck driving, particularly long-haul truck driving, is an extremely demanding job because of the long and continuous operating hours that cause driver fatigue, oversight, or delayed responses in emergencies. Crash avoidance technologies enable OEMs to achieve higher safety levels, particularly for trucks, as they are the vehicle type involved in a majority of road fatalities.

Regulatory Push

To reduce fatality rates and enhance vehicle safety, European regulators will push initiatives to make some advanced driver assistance system (ADAS) functions and safety features, such as the automatic emergency braking system (AEBS) and lane-departure warning (LDW), mandatory. Policy guidelines for the adoption of advanced ADAS functions will guide market participants in introducing features in future truck platforms.

Sensor Suite Development

Developments in vision enhancement and sensor suite technologies will make ADAS more reliable than previous generations.

Growth Restraints

  • Cost vs. Benefit
  • Cost of Ownership
  • Uncertain Regulatory Framework
  • Bundled Functions

Table of Contents

Growth Environment: Transformation in Software-Defined Trucks

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on the Software-Defined Truck Industry

Ecosystem in Software-Defined Trucks

  • Scope of Analysis
  • Segmentation
  • Key Competitors

Growth Generator in Software-Defined Trucks

  • Growth Metrics
  • Growth Drivers
  • Growth Restraints
  • Value Factor Forecast Considerations
  • Value Factor: Software-Defined Trucks
  • Foundation Layers of Software-Defined Trucks
  • Core Elements of Software-Defined Trucks
  • Manufacturing Approach: Traditional Trucks vs Software-Defined Trucks
  • Software Development Approaches by OEMs
  • Strategic Impact Areas in Software-Defined Trucks

E/E Architecture and Component Developments

  • Evolution of E/E Architecture in Software-Defined Trucks
  • Comprehensive Functional Modules: Software-Defined Trucks
  • Technology Adoption Phases in Software-Defined Trucks
  • Powertrain-Driven Evolution Trends in Software-Defined Trucks
  • Overview of X-By-Wire Technologies in Software-Defined Trucks
  • Application Suitability and Adoption of Software-Defined Trucks
  • Influencing Factors of Software-Defined Truck Use Cases
  • Impact Analysis of Software-Defined Truck Domains
  • Potential Revenue Models for Software-Defined Trucks
  • Impact Areas for Fleet Owner: Software-Defined Trucks

Overview of the Current Software-Defined Truck Landscape

  • Comprehensive Analysis: Flexis Mobility
  • Comprehensive Analysis: Ree Automotive
  • Comprehensive Analysis: Tesla Semi
  • Comparative Analysis of Existing Software-Defined Truck OEMs

OEM Software-Defined Strategy

  • Daimler: Software-Defined Strategy
  • Volvo: Software-Defined Strategy
  • Traton: Software-Defined Strategy
  • Paccar: Software-Defined Strategy
  • Hyundai: Software-Defined Strategy

Cybersecurity Framework and Regulations

  • Cybersecurity Threat Areas in Software-Defined Trucks
  • Key Factors Impacting the Software-Defined Truck Cybersecurity Landscape
  • Types of Cybersecurity Components in Software-Defined Trucks
  • Regulations Impacting Cybersecurity for Software-Defined Trucks

Growth Opportunity Universe in Software-Defined Trucks

  • Growth Opportunity 1: Technology Advancements
  • Growth Opportunity 2: Software Ecosystem
  • Growth Opportunity 3: Regulatory Readiness

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer