封面
市場調查報告書
商品編碼
1876854

全球汽車輕量化市場(2024-2030 年)

Automotive Lightweighting Market, Global, 2024-2030

出版日期: | 出版商: Frost & Sullivan | 英文 62 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

全球燃油效率和排放氣體法規正透過加速複合材料的採用,推動變革性成長。

Frost & Sullivan的這份報告檢驗了汽車輕量化策略,並重點介紹了汽車製造商(OEM)為減輕乘用車重量而採取的各種方法。隨著汽車產業快速向電氣化和永續性轉型,減輕車重是實現排放氣體目標、提高能源效率和降低成本的關鍵手段。輕量化使汽車製造商能夠在保持結構強度和安全性的同時,提高燃油經濟性、延長電動車(EV)續航里程並最佳化動力傳動系統設計。尖端材料和創新製造技術的結合可以在不犧牲耐久性的前提下實現這些優勢。儘管二氧化碳排放和燃油經濟性法規強烈鼓勵減重,但由於缺乏明確的強制性規定,導致整個行業採取的方法不盡相同。然而,隨著電氣化、高級駕駛輔助系統(ADAS)和聯網汽車功能的普及,車輛重量不斷增加,輕量化對於提升性能、續航里程和成本效益將變得更加重要。在未來十年,複合材料結構、電池結構整合和整體車輛設計方法有望使輕量化成為下一代出行解決方案的核心推動力。本報告分析了推動和阻礙因素,以及新興輕量化趨勢帶來的成長機遇,為市場相關人員和相關人員提供了可利用的洞見。本研究的地域範圍為全球。基準年為2024年,預測期間為2025年至2030年。

分析範圍

  • 本研究分析了汽車產業的車輛輕量化策略,並概述了汽車製造商採取的各種措施。
  • 在淨零碳排放目標和日益嚴格的全球排放標準的推動下,汽車製造商正在積極推行車輛設計和零件製造中的輕量化策略。
  • 本研究全面檢視了汽車生態系統中的各種輕量化舉措,重點分析了每項措施的優缺點、OEM廠商的採用情況以及策略部署,從而幫助人們全面了解產業趨勢。
  • 本研究的地理範圍是全球性的,分析了汽車產業採用的輕量化策略。

調查範圍

  • 目標區域
  • 世界
  • 調查期
  • 2024-2030
  • 基準年
  • 2024
  • 貨幣單位
  • 美元
  • 車輛分類
  • 搭乘用車

主要競爭對手

  • 汽車製造商
    • Stellantis
    • Volkswagen
    • Ford Motors
    • General Motors
    • Volvo
    • BMW
    • Mercedes-Benz
    • Porsche
    • Renault
    • Kia Motors
    • Nissan
  • 原物料供應商
    • ArcelorMittal
    • Thyssenkrupp
    • Novelis
    • Constellium
    • Alcoa
    • SGL Carbon
  • 零件製造商
    • Shiloh Industries
    • Tower International
    • Rochling Automotive
    • Henkel
  • 一級供應商
    • Gestamp
    • Martinrea
    • Benteler
    • Faurecia
    • Lear
    • Adient
    • Dana
    • GKN
    • AAM
  • 工程和仿真提供者
    • Altair
    • Ansys
    • Dassault Systemes
    • Magna Tooling
    • Schuler
    • Gestamp Tooling

成長促進因素

  • 嚴格的全球排放標準
  • 電動汽車滲透率和最佳化
  • 輕質材料的進步
  • 碰撞安全指南
  • 汽車製造商的永續性和淨零排放目標

成長阻礙因素

  • 材料高成本:碳纖維增強複合材料、鋁和天然纖維複合材料等先進輕量材料比傳統鋼材貴得多,影響了原始設備製造商的成本結構。
  • 低成本汽車區隔市場普及率低:價格溢價和負擔能力問題將阻礙對成本敏感的大眾市場區隔市場的普及,尤其是在開發中國家。
  • 車輛輕量化領域熟練勞動力短缺:使用輕量材料進行設計和製造需要專業知識,而該領域熟練勞動力的短缺正在減緩輕量化材料的普及應用。
  • 對耐用性和可修復性的擔憂:某些輕量材料容易損壞且難以修復,這引發了人們對其耐用性和消費者接受度的擔憂。
  • 缺乏適當的輕量化指導方針:各大地區缺乏統一的輕量化目標,導致原始設備製造商 (OEM) 採取的策略不一致,並降低了某些市場實施輕量化的緊迫性。

競爭環境

  • 競爭對手數量
    • 超過50家競爭對手
  • 競爭因素
    • 監管協調、合規準備、尖端材料創新、製造流程效率和永續性
  • 主要終端用戶產業
    • 汽車,乘用車
  • 主要競爭對手
    • Gestamp、佛吉亞、諾貝麗斯、康斯坦利姆、SGL Carbon、蒂森克虜伯鋼鐵、東麗株式會社、BASF、贏創、Altair Engineering
  • 2024年排名前五的公司的收入佔有率
    • 45%
  • 其他值得關注的競爭對手
    • 利安德巴塞爾工業控股有限公司,安賽樂米塔爾
  • 流通結構
    • 原料供應商、零件製造商、一級供應商、原始設備製造商 (OEM)、工程模擬供應商

重大併購

不適用

三大策略課題對汽車輕量化產業的影響

變革性大趨勢

  • 原因:
    • 在車輛電氣化、自動駕駛和永續性等趨勢的推動下,輕量化對於抵消電池重量、提高續航里程和性能以及幫助實現自動駕駛汽車 (AV) 的新碰撞配置至關重要。
    • 輕量化將是實現全球脫碳目標和滿足數位化架構需求的關鍵因素。
  • 佛洛斯特和沙利文的觀點:
    • 未來幾年,隨著汽車電氣化進程的不斷推進,汽車製造商(OEM)將被迫大幅減輕車身和底盤重量,以抵消沉重的電池重量並提高續航里程。
    • 隨著生命週期排放成為監管重點,汽車製造商將被迫優先考慮低碳、可回收和輕質材料,而不是傳統材料。
    • 模組化電動車(EV)滑板平台可實現重量最佳化結構設計的完全自由。

內部問題

  • 原因:
    • 原始設備製造商和供應商面臨成本壓力、資本支出 (CAPEX) 限制和供應鏈中斷,因此很難證明引入昂貴的輕質材料(如碳纖維增強塑膠 (CFRP))的合理性。
    • 由於需要更換模具和重新培訓員工,人們對更換材料的抵觸情緒正在減緩材料的採用。
  • 弗羅斯特的觀點:
    • 特別是隨著新的連接、成型和模擬技術對多材料結構的重要性日益凸顯,對勞動力進行再培訓和技能提升將變得至關重要。
    • 汽車製造商之間的平台整合(更少的汽車平臺對應更多的車型)將迫使供應商開發可擴展的輕量化解決方案,以適應模組化架構。

地緣政治動盪

  • 原因:
    • 貿易緊張局勢(例如美國國內的貿易緊張局勢)、對鋁和鋼徵收的關稅以及供應鏈民族主義將影響輕量材料的供應和成本。
    • 除非本地供應商能夠發展壯大,否則OEM廠商在地採購的趨勢可能會限制其獲得先進輕量材料的機會。
  • 弗羅斯特的觀點:
    • 預計在未來三到五年內,在地採購強制規定和貿易限制(例如,美國關稅和歐盟碳邊境調節稅)將重塑材料供應鏈,限制低成本進口輕量材料的取得。

目錄

戰略要務

  • 為什麼成長變得越來越困難
  • 策略要務
  • 三大策略要務對汽車輕量化產業的影響

汽車輕量化:生態系統

  • 分析範圍
  • 競爭環境
  • 主要競爭對手

成長促進因素

  • 成長促進因素
  • 成長阻礙因素

成長環境

  • 重點總結
  • 輕量化設計,提高燃油經濟性
  • 輕量化設計,提升效能
  • 減輕重量以減少二氧化碳排放
  • 輕量化設計,提升永續性
  • 減輕車輛零件重量的可能性
  • 2024年及2030年汽車輕量化材料分析
  • 選擇OEM輕量化活動
  • 影響輕量化的關鍵地方政府法規/標準/公告

汽車輕量化概述

  • 輕量化為何重要
  • 汽車產業輕量化方法的類型
  • 主要減肥方法分析
  • 近期減肥趨勢
  • 輕量化在各車輛領域
  • 部分OEM廠商的舉措與輕量化優勢

汽車輕量化:輕量材料的應用

  • 汽車輕量化關鍵材料
  • 主要輕質材料:比較分析
  • 2024 年和 2030 年汽車材料成分
  • 減重特徵比較
  • HSS-產業戰略
  • 鋁業戰略
  • 鎂產業策略
  • 塑膠產業策略
  • 天然纖維複合材料-產業戰略
  • 碳纖維增強複合材料產業戰略
  • 輕量化材料的未來發展趨勢

汽車輕量化:設計最佳化

  • 車輛設計中的關鍵輕量化策略
  • 拓樸最佳化
  • 拓撲最佳化程式
  • AI驅動的衍生設計
  • OEM廠商利用AI生成式設計實現輕量化的案例
  • 用於輕型建造的模組化平台

汽車輕量化:製造創新

  • 汽車製造中的關鍵輕量化策略
  • 汽車製造中的千兆廣播
  • 特斯拉的千兆廣播方案
  • 千兆廣播機構:各區域的OEM廠商舉措
  • 業界的焦點是下一代電動車的超高速投影技術
  • 熱壓印
  • 千兆廣播和熱沖壓製程的比較分析
  • 燙印工藝:熱燙印
  • 積層製造/3D列印在輕量化領域的應用
  • 3D列印多材質連接件:案例研究

汽車輕量化:電動車電池輕量化

  • 電動車電池輕量化的關鍵策略
  • 電動車電池輕量化:概述
  • 電動車電池輕量化策略的比較分析
  • 電動汽車電池結構整合
  • 輕量化電池配置方案
  • 用於電池設計的輕量材料
  • 案例研究:電池機殼的輕量化材料
  • 細胞到包裝技術
  • 電池減重的未來設計趨勢

發展機會

  • 成長機會 1:先進輕質材料的創新
  • 成長機會2:汽車供應鏈的變化
  • 成長機會3:更輕的電動車電池

附錄與後續步驟

簡介目錄
Product Code: MHC8-44

Global Fuel and Emission Norms are Driving Transformational Growth by Accelerating Multi-material Adoption

This Frost & Sullivan report examines automotive lightweighting strategies, highlighting the various initiatives adopted by original equipment manufacturers (OEMs) to reduce the weight of passenger vehicles. As the industry rapidly advances toward electrification and sustainability, reducing vehicle weight has become a crucial lever for meeting emissions targets, enhancing energy efficiency, and lowering costs. Lightweighting enables automakers to improve fuel economy, extend electric vehicle (EV) driving range, and optimize powertrain design, all while maintaining structural strength and safety. The adoption of advanced materials combined with innovative manufacturing techniques allows manufacturers to achieve these gains without compromising durability. Although carbon dioxide and fuel economy regulations strongly incentivize weight reduction, the absence of explicit mandates leads to uneven implementation across the sector. Nonetheless, as electrification, advanced driver assistant systems (ADAS), and connected vehicle features add to vehicle weight, lightweighting will become even more critical to deliver performance, range, and cost efficiency. Over the next decade, multi-material architectures, structural battery integration, and holistic vehicle design approaches are expected to make lightweighting a core enabler of next-generation mobility solutions. The report identifies the factors driving and restraining the industry as well as the growth opportunities arising from emerging lightweighting trends for market players and stakeholders to leverage. The geographical scope of this study is global. The base year is 2024, and the forecast period is from 2025 to 2030.

Scope of Analysis

  • The study analyzes vehicle lightweighting strategies in the automotive industry, providing highlights on the different initiatives adopted by OEMs.
  • With the rise of net-zero carbon targets and global emission standards, OEMs are actively embracing lightweighting strategies in vehicle design and component manufacturing.
  • The study offers a holistic view of the different lightweighting initiatives in the automotive ecosystem, highlighting the pros and cons of each initiative, OEM deployments, and strategic developments to provide a comprehensive understanding of the industry's trajectory.
  • The geographical scope of this study is global and analyzes lightweighting strategies used throughout the automotive industry.

Scope

  • Geographic coverage
  • Global
  • Study period
  • 2024-2030
  • Base year
  • 2024
  • Monetary unit
  • US Dollars
  • Vehicle segments
  • Passenger vehicles

Key Competitors

  • OEMs
    • Stellantis
    • Volkswagen
    • Ford Motors
    • General Motors
    • Volvo
    • BMW
    • Mercedes-Benz
    • Porsche
    • Renault
    • Kia Motors
    • Nissan
  • Raw Material Suppliers
    • ArcelorMittal
    • Thyssenkrupp
    • Novelis
    • Constellium
    • Alcoa
    • SGL Carbon
  • Component Manufacturers
    • Shiloh Industries
    • Tower International
    • Rochling Automotive
    • Henkel
  • Tier I Suppliers
    • Gestamp
    • Martinrea
    • Benteler
    • Faurecia
    • Lear
    • Adient
    • Dana
    • GKN
    • AAM
  • Engineering & Simulation Providers
    • Altair
    • Ansys
    • Dassault Systemes
    • Magna Tooling
    • Schuler
    • Gestamp Tooling

Growth Drivers

  • Stringent Global Emission Standards
  • EVs Adoption Range and Optimization
  • Advancements in Lightweight Materials
  • Crash Safety Guidelines
  • OEM Sustainability and Net-zero Targets

Growth Restraints

  • High Material Costs: Advanced lightweight materials such as CFRP, aluminum, and natural fiber composites are significantly more expensive than traditional steel, impacting OEM cost structures.
  • Lower Adoption in Low-cost Vehicle Segments: Cost-sensitive mass market segments, especially in developing countries, resist adoption due to price premium and affordability concerns.
  • Lack of Skilled Workforce in Vehicle Lightweighting: Specialized knowledge is required to design and manufacture with lightweight materials, and the skilled labor shortage in this area slows adoption.
  • Durability and Repairability Concerns: Certain lightweight materials are more prone to damage and harder to repair, raising concerns about durability and consumer acceptance.
  • Lack of Proper Lightweighting Guidelines: Lack of harmonized lightweighting targets across major regions leads to fragmented OEM strategies and less urgency in some markets.

Competitive Environment

  • Number of Competitors
    • 50+ competitors
  • Competitive Factors
    • Regulatory alignment, compliance readiness, advanced material innovation, manufacturing process efficiency, sustainability
  • Key End-user Industry Verticals
    • Automotive, passenger vehicles
  • Leading Competitors
    • Gestamp, Faurecia, Novelis, Constellium, SGL Carbon, Thyssenkrupp Steel, Toray Industries, BASF, Evonik, Altair Engineering
  • Revenue Share of Top 5 Competitors, 2024
    • 45%
  • Other Notable Competitors
    • LyondellBasell Industries Holdings B.V., ArcelorMittal
  • Distribution Structure
    • Raw material suppliers, component manufacturers, Tier I suppliers, OEMs, engineering & simulation providers

Notable Acquisitions and Mergers

NA

The Impact of the Top 3 Strategic Imperatives on the Automotive Lightweighting Industry

Transformative Megatrends

  • Why:
    • Trends like vehicle electrification, autonomy, and sustainability make lightweighting critical to offset battery weight, improve range and performance, and support new crash structures in autonomous vehicles (AVs).
    • Lightweighting becomes a key enabler of meeting global decarbonization targets and digital architecture demands.
  • Frost Perspective:
    • Vehicle electrification will rise in the coming years, pushing original equipment manufacturers (OEMs) to aggressively reduce body and chassis weight to offset heavy batteries and improve range.
    • Lifecycle emissions will become a regulatory focus, compelling OEMs to prefer low-carbon and recycled lightweight materials over traditional ones.
    • Modular electric vehicle (EV) skateboard platforms will enable complete freedom in weight-optimized structural design.

Internal Challenges

  • Why:
    • OEMs and suppliers face cost pressures, capital expenditure (CAPEX) limitations, and supply chain disruptions, making it harder to justify expensive lightweighting materials, like carbon fiber-reinforced plastic (CFRP).
    • Resistance to material change due to retooling and workforce reskilling needs slows adoption.
  • Frost Perspective:
    • Reskilling and up-skilling of the workforce will be essential, especially as new joining, forming, and simulation technologies become integral to multi-material structures.
    • Platform consolidation within OEMs (fewer vehicle platforms across more models) will pressure suppliers to develop scalable lightweight solutions that fit modular architectures.

Geopolitical Chaos

  • Why:
    • Trade tensions (e.g., US-China), tariffs on aluminum/steel, and supply chain nationalism impact the availability and cost of lightweight materials.
    • OEMs shift toward local sourcing, which may limit access to advanced lightweight materials unless regional suppliers evolve.
  • Frost Perspective:
    • Local sourcing mandates and trade restrictions (e.g., US-China tariffs, European Union (EU) carbon border tax) will reshape material supply chains in the next 3 to 5 years and limit access to low-cost imported lightweight materials.

Table of Contents

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative
  • The Impact of the Top 3 Strategic Imperatives on the Automotive Lightweighting Industry

Automotive Lightweighting: Ecosystem

  • Scope of Analysis
  • Competitive Environment
  • Key Competitors

Growth Generator

  • Growth Drivers
  • Growth Restraints

Growth Environment

  • Key Takeaways
  • Lightweighting for Improved Fuel Efficiency
  • Lightweighting for Enhancing Performance
  • Lightweighting for Reducing CO2 Emissions
  • Lightweighting for Improving Sustainability
  • Vehicle Component Lightweighting Potential
  • Analysis of Lightweighting Materials in Vehicles 2024 vs 2030
  • Select OEM Lightweighting Activities
  • Key Regional Government Regulations/Standards/Announcements Impacting Lightweighting

Automotive Lightweighting: Overview

  • Why Lightweighting is Important
  • Types of Lightweighting Methods in the Automotive Industry
  • Key Lightweighting Methods Analysis
  • Recent Trends in Lightweighting
  • Lightweighting in Different Vehicle Segments
  • Select OEM Initiatives and Lightweighting Benefits Observed

Automotive Lightweighting: Lightweight Materials Implementation

  • Key Lightweight Materials in Cars
  • Key Lightweight Materials: Comparative Analysis
  • 2024 vs. 2030 Material Composition in Vehicles
  • Lightweighting Properties Comparison
  • HSS-Industry Strategy
  • Aluminium-Industry Strategy
  • Magnesium-Industry Strategy
  • Plastics-Industry Strategy
  • Natural Fiber Composites-Industry Strategy
  • CFRP-Industry Strategy
  • Future Material Trends in Lightweighting

Automotive Lightweighting: Design Optimization

  • Key Lightweighting Strategies in Vehicle Design
  • Topology Optimization
  • Steps in Topology Optimization
  • AI-driven Generative Design for Lightweighting
  • Examples of OEMs using AI-generative Design for Lightweighting
  • Modular Platforms for Lightweighting

Automotive Lightweighting: Manufacturing Innovations

  • Key Lightweighting Strategies in Vehicle Manufacturing
  • Gigacasting in Automotive Manufacturing
  • Tesla Approach to Gigacasting
  • Vehicle Body Gigacasting: Select OEM Initiatives by Regions
  • Industry Focus on Hypercasting for Next-gen EVs
  • Hot Stamping
  • Comparative Analysis of Gigacasting vs. Hot Stamping Process
  • Gestamp Profile: Hot Stamping
  • Additive Manufacturing/3D Printing for Lightweighting
  • Multi-material Bonding using 3D Printing: Case Study

Automotive Lightweighting: EV Battery Lightweighting

  • Key Lightweighting Strategies in EV Batteries
  • Lightweighting EV Batteries: Overview
  • Comparative Analysis of EV Battery Lightweighting Strategies
  • EV Battery Structural Integration
  • Alternate Lightweight Battery Compositions
  • Lightweight Materials for Battery Design
  • Case Study: Lightweight Materials for Battery Enclosures
  • Cell-to-pack Technology
  • Future Design Trends in Battery Lightweighting

Growth Opportunity Universe

  • Growth Opportunity 1: Innovations in Advanced Lightweight Materials
  • Growth Opportunity 2: Shift in Automotive Supply Chain
  • Growth Opportunity 3: Lightweighting EV Batteries

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer