封面
市場調查報告書
商品編碼
1811968

癌症免疫療法市場成長機會(2024-2030)

Growth Opportunities in the Immuno-oncology Therapeutics Market, 2024-2030

出版日期: | 出版商: Frost & Sullivan | 英文 64 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

下一代免疫療法、人工智慧和生物標記驅動的個人化治療進步將推動轉型成長

全球癌症發生率預計將從2022年的2,000萬例增加77%,到2050年將超過3,500萬例。飲酒、吸菸、肥胖和空氣污染是導致癌症發生率上升的主要原因。現今的癌症研究重點是細胞和基因治療、抗體藥物複合體(ADC)、查核點抑制劑和多特異性抗體。臨床試驗主要集中於放射線治療、化療和多種免疫療法藥物的組合,目前有超過5000種癌症免疫療法開發中。

免疫腫瘤學(IO)徹底改變了癌症治療,但必須應對臨床試驗挑戰,以改善患者預後並加快核准。許多免疫腫瘤學療法在規模過大或患者群體不匹配的情況下進行評估,最終失敗。人體免疫反應並非總是能夠透過動物模型或2D體外系統預測。傳統的隨機對照試驗無法檢測出藥物未達到預期療效的徵兆,也不需要持續調整藥物。

人工智慧和生物標記指導的患者選擇、抵消抗藥性的聯合療法、免疫相關不利事件的即時安全監測、改善患者可及性的分散式臨床試驗以及自適應的人工智慧主導的試驗設計是應對這些挑戰的基本策略。這些方法使相關人員能夠增強腫瘤免疫療法創新,並提高癌症治療的有效性、可近性和安全性。

改良的生物標記平台有助於提升對腫瘤免疫生物學認知的深度和精準度。生物標記研究的快速發展領域包括多重免疫組化(IHC)、基於NGS的基因突變和表現圖譜檢測、高階基因結構的表觀遺傳圖譜繪製以及腫瘤能量狀態的代謝譜分析。

本研究檢視了臨床和管道發展、技術創新和區域市場動態,以概述2025年至2030年全球 IO 市場和收益預測。地理覆蓋範圍包括北美、歐洲、亞太、中東和北非以及拉丁美洲。

本研究檢驗了推動免疫治療發展的關鍵主題和技術,重點關注查核點抑制劑、抗體偶聯藥物(ADC)、雙特異性抗體、癌症疫苗以及過繼性細胞療法,包括 CAR-T、TCR 和 TIL。研究重點關注策略目標領域,包括克服對 PD-1/PD-L1 抑制劑的抗藥性,以及下一代藥物,包括同種異體療法和特異性治療方法。在這種動態環境中,本研究也探討了成長促進因素、阻礙因素以及相關人員的機會。

收益及預測

2024年營收將達到 1,106.9億美元,在2021年至2030年的研究期間內,年複合成長率(CAGR)為 10.7%。

三大戰略要務對生醫治療產業的影響

壓縮客戶價值鏈

為什麼

壓迫免疫腫瘤學市場的價值鏈意味著最佳化和簡化患者的診療過程,包括診斷、治療和術後護理。這可以透過整合各種醫療服務並利用免疫腫瘤學臨床試驗市場的尖端技術來實現。

全面全面的癌症治療非常重要,特別是在市場脈絡,包括綜合治療設施、協調的護理團隊和廣泛的後續護理計劃。

觀點

免疫腫瘤學市場的公司提供直接面對消費者的服務,例如家用癌症風險基因檢測套組,以加速診斷過程。

數位技術在自適應、人工智慧主導的癌症臨床試驗市場脈絡最佳化營運、提高病人參與並客製化護理,包括遠端諮詢、資料驅動的診斷和治療建議。

透過將種族、年齡和社會經濟因素緊密結合到生存和臨床決策中,腫瘤學價值鏈可以顯著改善免疫腫瘤生物標記平台市場的患者體驗。

顛覆性技術

為什麼

最近的技術進步,包括單細胞定序和空間轉錄組學,大大增強了對腫瘤微環境免疫生物學的理解,影響了自適應人工智慧驅動的癌症臨床試驗市場。

一種新的人工智慧方法利用治療變化預測來識別臨床試驗候選者,並推動了次世代定序儀(NGS)資料在下一代免疫腫瘤學市場中用於患者試驗匹配的應用。一種機器學習演算法利用患者報告的結果變數來預測急性癌症治療的發生率。

Sanofi與Owkin合作,以加強生物標記識別並提高臨床試驗的成功率,而GSK則與Tempus合作,以支持其在免疫腫瘤學市場的努力。

觀點

多重模式方法增進了對與免疫腫瘤學市場相關的腫瘤-免疫系統交互作用的理解。數位化工具有助於組織資料、揭示複雜模式並靈活提取免疫學相關資訊。由於致力於免疫療法創新的公司寥寥無幾,因此選擇非常重要。

人工智慧和加速運算徹底改變醫療保健,NVIDIA 等公司大力投資醫療保健服務,包括 IOVIA、Illumina 和 Mayo Clinic,影響著自適應人工智慧主導的癌症臨床試驗市場。

競爭激烈程度

為什麼

免疫腫瘤學市場競爭激烈,多家公司追求類似的臨床目標,大型製藥公司與新興生物技術公司合作,在免疫腫瘤學臨床試驗市場中尋求新資產。

隨著免疫療法、放射線治療、標靶治療和微生物組調節等新興需求的融合,臨床開發和法規環境變得更加複雜。

免疫腫瘤生物標記平台市場在細胞療法、腫瘤病毒、mRNA 疫苗和人工智慧生物標記發現方面取得了進展,推動了許多策略合作夥伴關係、合資企業、合併和收購。

觀點

儘管近年來取得了一些突破,但癌症免疫療法領域在臨床試驗市場中仍面臨諸多障礙,包括療效有限、療效持續時間短暫以及副作用意外等。一種常見的策略是致力於透過精準標靶藥物應用於特定的患者群體和腫瘤類型,實現差異化。

影響因素:人類推動公司透過RWE最佳化其品牌擴大策略。市場RWE推動早期小細胞肺疾病的退出。

促進因素

  • 生物標記平台的技術發展有望提供更準確、更全面的腫瘤免疫生物學知識。多種免疫組化(IHC)技術、基於 NGS 的檢測(用於檢測基因突變和基因表現譜)、表觀遺傳圖譜(用於定義高階遺傳結構)以及代謝譜(用於評估腫瘤能量狀態)是癌症免疫學市場中生物標記研究的快速發展領域。結合這些方法可以提供全面、多方面的腫瘤資訊。例如,將多種免疫組化(IHC)技術、成像技術與 NGS 技術相結合,可以揭示腫瘤內細胞間相互作用背景下基因表現的空間分佈。
  • 抗PD-(L)1和抗CTLA-4免疫療法已經改變了免疫腫瘤學市場的癌症治療,但抗藥性和毒性仍然存在。隨著免疫治療領域的進步,新的免疫調節標靶和機制被發現,有望增強治療性免疫療法。隨著人們對癌症免疫生物學的理解加深和抗體工程的進步,針對其他抑制性免疫查核點(例如LAG-3、TIM-3、TIGIT、CD47和B7家族)的藥物在免疫腫瘤學研究中變得越來越重要。
  • 免疫療法和分子標靶療法等精準醫療方法徹底改變了免疫腫瘤臨床試驗市場的癌症治療。然而,只有一小部分患者受益於這些治療方法。大多數癌症會對常規治療產生抗藥性。這些問題正透過結合各種治療方法的臨床研究得到解決。這些研究使用免疫療法、分子標靶療法和放射線治療來治療各種惡性腫瘤。新出現的證據表明,聯合治療可以預防或延緩抗藥性。免疫療法,尤其是 ICI,與其他癌症治療方法合併使用時效果顯著。 FDA核准的多項癌症治療免疫療法組合證明了下一代免疫腫瘤療法的有效性。
  • 癌症免疫學市場需要更廣泛地採用創新工具,這些工具能夠有效地測量和整合影響腫瘤免疫和免疫治療反應的各種宿主因素。穿戴式裝置可以追蹤各種生理變量,包括心率、呼吸頻率、氧合等級、睡眠模式以及壓力和痛苦程度。評估全身性發炎和代謝健康的設備開發中或已上市。在自適應人工智慧主導的腫瘤臨床試驗市場中,已有工具可用於捕捉食物和其他代謝物的消耗,以說明代謝變數。已有技術可用於說明飲食模式並分析資料驅動的飲食模式與療效之間的關聯。

成長阻礙因素

  • 闡明抗腫瘤反應、免疫相關毒性和治療抗藥性的機制面臨三大挑戰:用於正向和反向應用的臨床相關腫瘤模型的可用性、從接受免疫治療的患者身上收集的生物樣本的可用性以便在基準、治療期間和治療後進行縱向分析,以及實施在免疫腫瘤學臨床試驗市場中進行研究的標準化定義和框架。
  • 基因組檢測有望在免疫腫瘤學市場提供寶貴的臨床訊息,但也可能對個人和家庭產生經濟和心理影響。它還可能導致社會恥辱感,並影響保險覆蓋範圍。由於需要快速檢測和高效的資料分析,檢測可能具有挑戰性。臨床追蹤的另一個問題是,當發現新的生殖系致病變異並確定疾病的相對風險時,需要重新評估家庭和個人面臨的風險。
  • 在免疫腫瘤生物標記平台市場中,識別最合適的標靶抗原仍然是一項重大挑戰。由病毒感染或基因突變(無論是遺傳性或後天性)引起的腫瘤可能含有免疫系統易於辨識的(新)抗原。在其他情況下,常見的腫瘤抗原可能提供更廣泛的適用治療方法。在免疫腫瘤市場中,研究癌前病變以發現新的強效抗原非常重要。在腫瘤發生早期出現的病變,例如增生和原位癌,通常較小,只需有限的組織即可進行檢查。取得這些病灶可能具有挑戰性,取得組織樣本可能需要由熟練的專家進行專門的操作,例如菌落細胞學檢查或支氣管鏡檢查。
  • 在自適應人工智慧主導的癌症臨床試驗市場中,目前的臨床前模型不足以重現宿主環境對癌症發生、進展和免疫反應的影響。這可能導致它們無法充分確定免疫療法反應和抗藥性機制以及免疫相關毒性。癌症免疫學市場需要能夠有效捕捉複雜宿主-環境相互作用的新模型,這些相互作用在塑造腫瘤免疫系統動態中發揮關鍵作用。例如,煙霧引起的基因破壞已證明會改變癌症腫瘤的增強和發展。因此,在癌症免疫學臨床試驗市場中,基因組吸煙特徵的存在,特別是由NGS發現並由TMB反映的吸煙相關基因改變,與其對癌症背景下免疫細胞行為的影響之間存在明顯的相關性。關於間接環境暴露對腫瘤免疫和免疫療法療效的影響,仍有許多有待發現。

目錄

調查範圍

成長環境:癌症免疫治療市場的轉型

癌症免疫治療市場生態系統

  • 全球癌症病例和死亡人數
  • 全球新增癌症病例預測
  • 主要治療類別
  • 腫瘤藥物研發趨勢
  • IO藥物開發趨勢
  • 臨床試驗挑戰及克服策略
  • 癌症治療的技術趨勢
  • IO經營模式
  • 策略夥伴關係與合作 - ICI
  • 策略夥伴關係與合作 - ACT
  • 策略夥伴關係與合作 - 基於抗體的標靶治療
  • 策略夥伴關係與合作 - 癌症疫苗
  • 推進精準腫瘤學的關鍵策略
  • 併購評估
  • 創投評估
  • 競爭環境
  • 主要競爭對手:IO價值鏈與相關利益者生態系統

推動IO治療市場成長的因素

  • 成長指標
  • 成長動力
  • 成長限制因素
  • 研究過程和調查方法
  • 預測考慮因素
  • 收益預測
  • 收益預測分析
  • 依模式分類的收益預測
  • 收益預測分析
  • 依適應症的收益預測
  • 收益預測分析
  • 各地區收益預測
  • 區域預測分析
  • 趨勢與措施 - 北美
  • 趨勢與計劃 - 歐洲
  • 亞太地區趨勢與舉措
  • 趨勢與措施 - 拉丁美洲
  • 趨勢與計劃 - 中東和北非
  • IO 定價趨勢和降低成本的潛在途徑
  • 中低收入國家癌症免疫治療的成本降低策略
  • 收益分配
  • 收益分配分析

成長動力:ICI

  • 成長指標
  • 收益預測
  • 預測分析

成長動力:ACT

  • 成長指標
  • 收益預測
  • 預測分析

成長動力:基於抗體的標靶治療

  • 成長指標
  • 收益預測
  • 收益預測-ADC

成長動力:其他

  • 成長指標
  • 收益預測
  • 預測分析

成長機會

  • 成長機會1:擴大免疫查核點ICI在早期癌症術前和術後治療的應用
  • 成長機會2:不斷發展的多生物標記方法
  • 成長機會3:準確模擬腫瘤免疫生物學的臨床前模型
  • 成長機會4:基於生成式人工智慧的電腦In Silico技術

後續步驟

簡介目錄
Product Code: PFOS-52

Advances in Next-Generation Immunotherapies, AI, and Biomarker-Driven Personalization are Driving Transformational Growth

Worldwide cancer incidence is expected to exceed 35 million new cases by 2050, a 77% rise from the 20 million cases in 2022. Alcohol intake, tobacco usage, obesity, and air pollution are the main causes of this increase. Cancer studies today emphasize cell and gene therapy, antibody-drug conjugates (ADCs), checkpoint inhibitors, and multi-specific antibodies. With clinical trials emphasizing combinations of radiation, chemotherapy, or many immunotherapy medicines, more than 5,000 immuno-oncology medications are under development.

Although immuno-oncology (I-O) has revolutionized cancer therapy, problems with clinical trials must be resolved to improve patient outcomes and speed approvals. Many I-O therapies show failure when evaluated across too-large or incompatible patient groups; human immune responses cannot always be deduced from animal models and two-dimensional in vitro systems. Conventional randomized controlled studies may not find signs or call for continuous changes should a medicine not be functioning as expected.

AI and biomarker-based patient selection, combination approaches to offset resistance, real-time safety monitoring for immune-related adverse events, distributed clinical trials to improve patient access, and adaptive, AI-driven trial designs are fundamental strategies to meet these challenges. With these approaches, stakeholders are strengthening I-O innovation and improving the effectiveness, accessibility, and safety criteria of cancer therapy.

Improved biomarker platforms help to increase tumor immunobiology's depth of knowledge and accuracy. Fast-growing fields in biomarker research include multiplex IHC, NGS-based testing for gene mutations and expression profiles, epigenetic mapping for higher-order gene structures, and metabolic profiling for tumor energy status.

Frost & Sullivan studied clinical and pipeline developments, technological innovation, and regional market dynamics to develop this research service, which provides an overview of the global I-O market and a revenue projection from 2025 to 2030. The geographical scope is North America, Europe, Asia-Pacific, the Middle East and North Africa, and Latin America.

With an eye on checkpoint inhibitors, ADC, bispecific antibodies, cancer vaccines, and adoptive cell treatments including CAR-T, TCR, and TILs, this report examines the main themes and technologies driving the evolution of I-O therapies. Along with strategic target areas including overcoming resistance to PD-1/PD-L1 inhibitors, it stresses next-generation drugs including allogeneic approaches and multi-specific modalities. In this fast-changing environment, the study also investigates growth drivers, restraints, and opportunities for stakeholders.

Revenue Forecast

The revenue estimate for the base year 2024 is projected at $110.69 billion, with a compound annual growth rate (CAGR) of 10.7% during the study period from 2021 to 2030.

The Impact of the Top 3 Strategic Imperatives on the I-O Therapeutics Industry

Customer Value Chain Compression

Why

Patient value chain compression in the immuno-oncology market entails optimizing and simplifying the patient's journey, including the stages of diagnosis, treatment, and post-treatment care. This is accomplished by combining different healthcare services and using cutting-edge technology in immuno-oncology clinical trials market.

Comprehensive, integrated cancer care is important, especially in the context of the immuno-oncology biomarker platforms market. Integrated treatment facilities, coordinated care teams, and extensive aftercare plans are examples of this.

Frost Perspective

Companies in the immuno-oncology market are providing direct-to-consumer services, such as cancer risk genetic testing kits that may be used at home thus expedite the diagnosing process.

Digital technology optimizes operations, improves patient engagement, and customizes treatment in the context of the adaptive AI-driven oncology trials market. This includes remote consultations, data-driven diagnostics, and treatment recommendations.

By tightly integrating racial, age, and socioeconomic considerations into their survival and clinical decision-making, the oncology value chain can significantly improve patients' experiences within the immuno-oncology biomarker platforms market.

Disruptive Technologies

Why

Recent technological advancements, including single-cell sequencing and spatial transcriptomics, have greatly enhanced our understanding of the immunobiology of the tumor microenvironment, influencing the adaptive AI-driven oncology trials market.

A new AI method uses treatment change predictions to identify clinical trial candidates, advancing the use of next-generation sequencing (NGS) data for patients' trial matching in the next-generation immuno-oncology therapies market. A machine learning algorithm predicts cancer acute care occurrences using patient-reported outcome variables.

Sanofi is collaborating with Owkin to boost biomarker identification and raise clinical trial success rates. GSK has teamed with Tempus to aid the effort in the immuno-oncology market.

Frost Perspective

Multi-modality methods have improved our understanding of tumor-immune system interactions relevant to the immuno-oncology market. Digital tools help to organize data, uncover complicated patterns, and extract immunologically relevant information in a flexible way. Since few companies respond to innovations in immunotherapy, it is crucial to select.

AI and accelerated computing are revolutionizing medicine, and companies like NVIDIA are investing heavily in healthcare services, including IOVIA, Illumina, and Mayo Clinic, impacting the adaptive AI-driven oncology trials market.

Competitive Intensity

Why

The immuno-oncology market is competitive, with several companies aiming for similar clinical targets and big pharma teaming up with emerging biotech for novel assets in the immuno-oncology clinical trials market.

Clinical development and regulatory environments are complicated by the convergence of immunotherapy, radiation, targeted treatments, and new demands, such as microbiome regulation.

Cell treatments, oncologic viruses, mRNA vaccines, and AI-driven biomarker discovery are advancing in the immuno-oncology biomarker platforms market. These developments have driven many strategic alliances, joint ventures, mergers, and acquisitions.

Frost Perspective

Despite recent breakthroughs, there are still obstacles in the field of cancer immunotherapy within the immuno-oncology clinical trials market. These include limited effectiveness, temporary duration, and unintended impacts. Under a general strategy, differentiating via precision targets medicines for certain patient groups or tumor types has become a focal point.

Factors: Human beings are asking companies to optimize label expansion strategies via RWE. Market RWE will facilitate escape from earlier stages of the small cell lung.

Growth Drivers

  • Technological developments in biomarker platforms provide the potential for more accurate and comprehensive knowledge of tumor immunobiology. Multiple IHC, NGS-based testing to detect gene mutations and gene expression profiles, epigenetic mapping to define higher-order gene structures, and metabolic profiling to assess the tumor's energy status are among the quickly expanding fields of biomarker research in the immuno-oncology market. Combining these methods can offer a comprehensive depiction of the tumor from multiple perspectives. When multiple IHC and imaging are combined with NGS, for instance, the spatial distribution of gene expression in the context of cell-cell interactions inside the tumor may be revealed.
  • Anti-PD-(L)1 and anti-CTLA-4 immunotherapy has changed cancer treatment in the immuno-oncology market, although resistance and toxicity persist. New immunoregulatory targets and mechanisms are being discovered as I-O advances, promising to enhance therapeutic immunotherapy. As cancer immunobiology is better understood and antibody engineering advances, agents targeting additional inhibitory immune checkpoints, such as LAG-3, TIM-3, TIGIT, CD47, and B7 family members, are becoming important in cancer immunotherapy research.
  • Precision medicine methods such as immunotherapy and molecularly targeted treatment have changed cancer care within the immuno-oncology clinical trials market. However, few people benefit from these therapies. Most cancers develop resistance to conventional treatments. These issues are being addressed by clinical studies of various treatment combinations. These studies use immunotherapy, molecularly targeted therapy, and radiation to treat different malignancies. There is emerging evidence that combination treatment may prevent or delay resistance. When combined with other cancer treatments, immunotherapies, especially ICIs, are effective. Multiple FDA approvals of immunotherapy combinations for cancer therapy are indicative of their effectiveness in the next-generation immuno-oncology therapies market.
  • There is a need for wider adoption of innovative tools that can effectively measure and integrate the various host factors that influence tumor immunity and the response to immunotherapy in the immuno-oncology market. Wearable devices can track various physiologic variables, including heart rate, respiratory rate, oxygenation levels, sleep patterns, and stress and distress levels. Instruments for assessing systemic inflammation and metabolic fitness are either under development or commercially accessible. Tools are available to capture consumption of food and other metabolites to describe metabolic variables within the adaptive AI-driven oncology trials market. Technology is available to describe dietary patterns and examine associations with outcomes based on data.

Growth Restraints

  • Three significant challenges exist when it comes to understanding the mechanisms of antitumor response, immune-related toxicity, and therapeutic resistance: the ability to use tumor models that are relevant to clinical applications for both forward and reverse translation; the availability of biospecimens collected from patients undergoing immunotherapy treatment, allowing for longitudinal analysis at baseline, during treatment, and post-treatment; and the implementation of standardized definitions and frameworks for conducting studies in the immuno-oncology clinical trials market.
  • Genomic testing has the potential to provide valuable clinical information in the immuno-oncology market, but it can also have financial and psychological consequences for individuals and families. It may also lead to social stigma and affect one's ability to obtain insurance. Testing can be challenging due to the need for fast testing and efficient data analysis. Another problem with clinical follow-up is the need for reevaluating the danger to a family and an individual when new germline pathogenic variations are identified, and their relative risk of illness is determined.
  • Identifying the most suitable antigens to target within the immuno-oncology biomarker platforms market continues to be a significant challenge. Tumors caused by viral infection or genetic mutations, whether inherited or acquired, may contain (neo)antigens that the immune system can easily identify. In other circumstances, common tumor antigens can provide a more widely applicable treatment. Examining premalignant lesions for new and powerful antigens to focus on is crucial in the context of the immuno-oncology market. Lesions that appear in the initial stages of tumorigenesis, such as hyperplasia and carcinoma in situ, are typically tiny and offer only a small amount of tissue for examination. Accessing these lesions can be challenging and may require specialized procedures, such as colony cytology or bronchoscopy, performed by skilled professionals to obtain tissue samples.
  • Preclinical models fall short in reproducing the effects of the interactions between the host environment and the onset, progression, and immune response of cancer in the adaptive AI-driven oncology trials market. This might partially account for their inadequacies in determining the mechanisms of immunotherapy response and resistance as well as immune-related toxicity. The community requires new models that can effectively capture the intricate interactions between the host and environment, which play a crucial role in shaping the dynamics between the tumor and immune system within the immuno-oncology market. For instance, breaking in the genetic smoke has been shown to enhance and change the developing tumors in cancers. In line with this, there is a definite correlation between the existence of a genomic smoking signature, particular smoking-related genetic alterations found by NGS and reflected by TMB, and the impact these have on immune cell behavior in the context of cancer in the immuno-oncology clinical trials market. There is still much to be discovered regarding the indirect environmental exposures on tumor immunity and the effectiveness of immunotherapy.

Table of Contents

Research Scope

  • Market Definition, Scope, and Segmentation
  • Market Segmentation

Growth Environment: Transformation in the I-O Therapeutics Market

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on the I-O Therapeutics Industry

Ecosystem in the I-O Therapeutics Market

  • Cancer Cases and Deaths Worldwide
  • Predicted Number of New Cancer Cases Worldwide
  • Top Therapeutic Categories
  • Oncology Drug Development Trend
  • I-O Drug Development Trends
  • Clinical Trial Challenges and Strategies to Overcome
  • Technology Trends Across the Cancer Continuum
  • I-O Business Models
  • Strategic Partnerships and Collaborations-ICIs
  • Strategic Partnerships and Collaborations-ACT
  • Strategic Partnerships and Collaborations-Antibody-based Targeted Therapies
  • Strategic Partnerships and Collaborations-Cancer Vaccines
  • Key Strategies for Advancing Precision Oncology
  • M&A Assessment
  • Venture Financing Assessment
  • Competitive Environment
  • Key Competitors: I-O Value Chain and Stakeholder Ecosystem

Growth Generator in I-O Therapeutics Market

  • Growth Metrics
  • Growth Drivers
  • Growth Restraints
  • Research Process and Methodology
  • Forecast Considerations
  • Revenue Forecast
  • Revenue Forecast Analysis
  • Revenue Forecast by Modality
  • Revenue Forecast Analysis
  • Revenue Forecast by Indication
  • Revenue Forecast Analysis
  • Revenue Forecast by Region
  • Forecast Analysis by Region
  • Trends and Initiatives-North America
  • Trends and Initiatives-Europe
  • Trends and Initiatives-APAC
  • Trends and Initiatives-LATAM
  • Trends and Initiatives-MENA
  • I-O Pricing Trends and Potential Avenues for Cost Reduction
  • Cancer Immunotherapy Cost Reduction Strategies in LMICs
  • Revenue Share
  • Revenue Share Analysis

Growth Generator: ICI

  • Growth Metrics
  • Revenue Forecast
  • Forecast Analysis

Growth Generator: ACT

  • Growth Metrics
  • Revenue Forecast
  • Forecast Analysis

Growth Generator: Antibody-based Targeted Therapies

  • Growth Metrics
  • Revenue Forecast
  • Revenue Forecast-ADC

Growth Generator: Others

  • Growth Metrics
  • Revenue Forecast
  • Forecast Analysis

Growth Opportunity Universe

  • Growth Opportunity 1: Expanding the Use of Immune Checkpoint ICIs in Neoadjuvant and Pre-operative Settings for Early-Stage Cancer
  • Growth Opportunity 2: Advancing Multi-biomarker Approaches
  • Growth Opportunity 3: Preclinical Models That Precisely Mimic Tumor Immunobiology
  • Growth Opportunity 4: Generative AI-based In Silico Techniques

Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Legal Disclaimer