封面
市場調查報告書
商品編碼
1725042

美國H2 ICE 卡車產業二氧化碳排放生命週期(2024-2040 年)

CO2 Emissions Life Cycle in the H2 ICE Truck Industry, United States, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 44 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

採用 H2 ICE 作為清潔的 H2 生產源和中間解決方案將推動轉型成長,並顯著減少二氧化碳排放

在這項研究中,Frost & Sullivan 重點關注美國卡車運輸業最有前景的燃料 H2,並研究二氧化碳排放的影響,全面檢查了氫內燃機 (H2 ICE) 卡車的二氧化碳 (CO2) 特徵。我們的分析從考慮 H2 的理由開始,強調與傳統燃料相比減少生命週期排放的潛力。

我們深入研究了不同的 H2 生產方法,從灰氫到可再生能源,並揭示了每種方法都有不同的碳足跡。它主要關注製造 H2 ICE 汽車所產生的二氧化碳排放,並指出其中很大一部分來自 H2 引擎和儲存槽等零件。 Frost & Sullivan 也對電池電動卡車、燃料電池電動卡車和柴油卡車進行了比較分析,預測了卡車整個使用壽命內的二氧化碳總排放。

最終,該研究強調了卡車運輸業迫切需要轉向更清潔的 H2 生產方法和最佳化汽車製造,以實現二氧化碳排放的大幅減少。

三大戰略問題對氫燃料卡車產業二氧化碳排放生命週期的影響

轉型大趨勢

為什麼?

  • 清潔交通正成為一種大趨勢,新的出行模式正在塑造該產業的未來。
  • 各種類型的清潔交通工具越來越受歡迎,包括氫內燃機汽車 (H2 ICE)、電池電動車 (BEV) 和燃料電池電動車 (FCEV)。

弗羅斯特的觀點

  • 卡車運輸業是否採用 H2 ICE 等近零二氧化碳 (CO2)排放動力傳動系統,將在很大程度上取決於擁有成本、H2 基礎設施狀況和政府支持。
  • 產業轉型導致新公司的出現和現有公司的顛覆。

產業融合

為什麼?

  • 生命週期二氧化碳排放評估連結不同的產業領域。能源供應商、H2 發電廠、燃料運輸業者和燃料零售商必須共同努力,盡量減少 H2 ICE 的碳足跡。

弗羅斯特的觀點

  • 監管機構需要製定二氧化碳追蹤計劃,以確保所有行業相關人員了解實現全生命週期二氧化碳中和的重要性。 Frost & Sullivan 預測,到 2030 年,美國和歐洲將引領法規環境。

地緣政治動盪

為什麼?

  • 零排放卡車的生命週期評估將跨境進行。例如,澳洲和剛果共和國可以開採電池所需的礦物,中國可以精製礦物,韓國組裝電池,最終的汽車將在美國行駛。因此,相關人員必須確保整個全球供應鏈的碳中和。

弗羅斯特的觀點

  • 卡車目標商標產品製造商(OEM)和監管機構需要針對全球供應鏈限制進行規劃,並應推動本地生產以更好地控制整個流程,避免向清潔能源運輸轉型過程中的地緣政治影響。

研究範圍

各點內容

  • 基準年:2023年
  • 調查期間:2023-2030年(購買年份),2023-2036年(使用年份)
  • 預測期間:2024-2030 年(購買年份),2024-2036 年(使用年份),H2 採用預測至 2040 年
  • 市場:零排放卡車
  • 細分市場:中型卡車(MDT)和重型卡車(HDT)
  • 使用週期:使用週期是指使用年數(初始使用壽命)。本研究以循環 A 和 H 為例。
  • 專案領域:行動性
  • 地理區域:美國:加州、德克薩斯州、西南部(亞利桑那州和新墨西哥州總合)

成長動力

H2 ICE 卡車二氧化碳排放生命週期:成長動力(美國,2024-2037 年)

  • 轉向清潔能源生產:H2 的生產來源是影響 CO2排放的關鍵因素。美國嚴重依賴天然氣,再生能源來源的轉型將對二氧化碳排放產生正面影響。
  • 遠距且易於加油:借助專用的 H2 基礎設施,只需幾分鐘即可為卡車的 H2 罐添加氣態 H2。在許多使用案例中,當前一代 H2 ICE 車輛已經節省燃料,並且對車隊營運商具有經濟吸引力。
  • 對汽車生態系統的微小改變:僅對動力傳動系統和後處理系統進行微小改變以及對現有供應鏈進行微小改變將有助於推動 H2 ICE 技術的採用。
  • 可比較的前期成本:購買 H2 ICE 卡車的前期成本明顯低於 BEV 和 FCEV 選項,與傳統 ICE 車輛大致相同。

成長抑制因素

H2 ICE 卡車二氧化碳排放生命週期:成長抑制因素(美國,2024-2037 年)

  • 有限的 H2 成本
  • 燃料基礎設施不足
  • 間接排放
  • 安全問題

目錄

美國H2 ICE 卡車產業二氧化碳排放生命週期(2024-2040 年)

轉型

  • 為何成長變得越來越困難?
  • 戰略問題
  • 三大策略問題對氫動力內燃機卡車產業生命週期二氧化碳排放的影響

成長環境:H2生態系統

  • H2是未來的燃料
  • H2 ICE 卡車生命週期二氧化碳流量
  • 生產氫氣的不同方法
  • 主要燃料特性比較
  • 引擎主要參數對比
  • H2 ICE 的燃料噴射方法

生態系統

  • 研究範圍
  • 動力傳動系統技術細分

成長要素

  • 成長動力
  • 成長抑制因素

氫氣生產過程中二氧化碳排放的痕跡

  • 主要氫氣生產方法分析
  • 影響氫氣生產應用的關鍵因素
  • 因素一:低二氧化碳排放及準備量
  • 因素2:清潔氫氣計畫與目標
  • 因素三:各州的氫氣生產潛力與計畫
  • 預測加州氫氣生產的採用情況
  • 西南地區氫氣生產的預計採用情況
  • 德克薩斯州採用 H2 生產預測
  • 氫氣生產過程中二氧化碳排放軌跡

氫燃料卡車製造過程中的二氧化碳排放路徑

  • H2 ICE卡車的關鍵零件
  • 車輛架構比較:柴油與 H2 ICE
  • H2 ICE 卡車主要部件重量
  • 氫燃料卡車製造中的二氧化碳排放軌跡

成長要素:H2 ICE-MDT 運行的二氧化碳排放軌跡

  • 使用案例特徵和預測假設
  • 循環A和H:H2消費量和CO2排放
  • A-H 循環:每英里二氧化碳排放量 (kg)

成長要素:H2 ICE-HDT運作期間二氧化碳排放軌跡

  • 使用案例特徵和預測假設
  • 循環A:火花點火
  • 循環A:高壓缸內直噴
  • 循環H:火花點火
  • 循環H:高壓缸內直噴
  • A-H 循環:每英里二氧化碳排放量 (kg)

內燃機、純電動車與氫動力內燃機汽車的二氧化碳排放軌跡比較

  • MDT:ICE、BEV、FCEV 和 H2 ICE 循環 A 和 H 的比較
  • HDT:ICE、BEV、FCEV 和 H2 ICE 循環 A 和 H 的比較

關鍵要點:

  • 前 3 項

成長機會領域

  • 成長機會1:追蹤二氧化碳排放
  • 成長機會2:替代低排放技術
  • 成長機會3:擴大氫能基礎設施

附錄與後續步驟

  • 成長機會的益處和影響
  • 後續步驟Next steps
  • 附件列表
  • 免責聲明
簡介目錄
Product Code: PFM4-42

Clean H2 Production Sources and the Adoption of H2 ICE as an Intermediate Solution are Driving Transformational Growth by Significantly Reducing CO2 Emissions

In this study, Frost & Sullivan offers a comprehensive exploration of the carbon dioxide (CO2) trail of a hydrogen internal combustion engine (H2 ICE) truck by investigating the carbon emission implications, focusing on H2 as a prospective fuel for the trucking industry in the United States. Our analysis begins with the rationale for considering H2, highlighting its potential to mitigate life cycle emissions compared to conventional fuels.

We delve into various H2 production methods, ranging from grey H2 to renewable sources, each carrying distinct carbon footprints. Emphasis falls on the CO2 emissions associated with manufacturing H2 ICE vehicles, pinpointing significant contributions from components, including the H2 engine and storage tanks. Frost & Sullivan also projects total CO2 emissions throughout the operation of a truck, drawing comparative insights with its battery electric, fuel cell electric, and diesel truck counterparts.

Ultimately, this study underscores the urgency of transitioning to cleaner H2 production methods and optimizing vehicle manufacturing to achieve substantial CO2 emission reductions in the trucking industry.

The Impact of the Top 3 Strategic Imperatives on the CO2 Emissions Life Cycle in the H2 ICE Truck Industry

Transformative Megatrends

Why

  • Clean transportation is gaining momentum as a megatrend, with new mobility models shaping the industry's future.
  • Various types of clean transportation, such as hydrogen internal combustion engine (H2 ICE) vehicles, battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs), are gaining traction.

Frost Perspective

  • The trucking industry's adoption of near-zero carbon dioxide (CO2) emission powertrains, such as H2 ICE, will largely depend on the cost of ownership, the state of the H2 infrastructure, and government support.
  • Industry transformation will lead to the emergence of new players and disruption among existing players.

Industry Convergence

Why

  • A life cycle CO2 emission assessment brings different industry segments together. Energy sourcing companies, H2 generation plants, fuel transportation operators, and fuel dispensing outlets must collaborate to ensure the carbon trail for an H2 ICE remains minimal.

Frost Perspective

  • Regulatory authorities must lay out CO2 tracking plans to ensure all industry players understand the importance of achieving total life cycle CO2 neutrality. A few countries have begun rolling out regulations to track CO2 emissions; Frost & Sullivan expects the United States and Europe to lead the regulatory environment by 2030.

Geopolitical Chaos

Why

  • The life cycle assessment of zero-emission trucks goes beyond borders. For example, Australia and the Republic of the Congo mine minerals for batteries, China refines the minerals, South Korea assembles the batteries, and the final vehicles operate in the United States. As such, stakeholders must ensure carbon neutrality across the global supply chain.

Frost Perspective

  • Truck original equipment manufacturers (OEMs) and regulatory authorities must plan for global supply chain constraints, with a push toward local manufacturing to ensure more control of the complete process and avoid geopolitical impacts on the transition to clean-energy transportation.

Research Scope

Content Present in Points

  • Base Year: 2023
  • Study Period: 2023-2030 (purchase years); 2023-2036 (user years)
  • Forecast Period: 2024-2030 (purchase years); 2024-2036 (user years), H2 adoption forecast until 2040
  • Market: Zero-emission trucks
  • Segment: Medium-duty trucks (MDTs) and heavy-duty trucks (HDTs)
  • User Cycle: User cycle refers to the usage years (first life); the study illustrates cycles A and H
  • Program Area: Mobility
  • Geographic Scope: United States: California, Texas, and the Southwest (Arizona and New Mexico combined)

Growth Drivers

CO2 Emissions Life Cycle in the H2 ICE Truck: Growth Drivers, US, 2024-2037

  • Shift Toward Clean Energy Generation: The source of H2 production is an important factor impacting CO2 emissions. The United States depends heavily on NG, and the move toward renewable sources will positively impact CO2 emissions.
  • Ease of Long-range Driving and Refueling: With specialized H2 infrastructure, refueling a truck's H2 tank with gaseous H2 takes only a few minutes, significantly shorter than the extended recharge period for BEVs. In many use cases, the present generation of H2 ICE vehicles already has good fuel efficiency, making them economically appealing to fleet operators.
  • Minimal Change to the Automotive Ecosystem: Mild modification to the powertrain and aftertreatment system, in addition to minimal change to the existing supply chain, is an added boost to the adoption of H2 ICE technology.
  • Comparable Upfront Cost: The upfront cost of acquiring an H2 ICE truck is significantly lower than that of BEV or FCEV options and is more similar to that of conventional ICE vehicles.

Growth Restraints

CO2 Emissions Life Cycle in the H2 ICE Truck: Growth Restraints, US, 2024-2037

  • Restraint Cost of H2
  • Inadequate Refueling Infrastructure
  • Indirect Emissions
  • Safety Concerns

Table of Contents

CO2 Emissions Life Cycle in the H2 ICE Truck Industry, United States, 2024-2040

Transformation

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative
  • The Impact of the Top 3 Strategic Imperatives on the CO2 Emissions Life Cycle in the H2 ICE Truck Industry

Growth Environment: H2 Ecosystem

  • H2 Is the Fuel of the Future
  • Life Cycle CO2 Flow of an H2 ICE Truck
  • Different Methods of Producing H2
  • Comparison of Key Fuel Characteristics
  • Comparison of Key Engine Parameters
  • H2 ICE Fuel Injection Methods

Ecosystem

  • Research Scope
  • Powertrain Technology Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

CO2 Emission Trail During H2 Production

  • Analysis of Major H2 Production Methods
  • Key Factors Impacting the Adoption of H2 Production Methods
  • Factor 1: Lower CO2 Emissions and Readiness Levels
  • Factor 2: Clean H2 Programs and Targets
  • Factor 3: States' H2 Production Potential and Plan
  • Adoption Forecast of H2 Production in California
  • Adoption Forecast of H2 Production in the Southwest
  • Adoption Forecast of H2 Production in Texas
  • CO2 Emission Trail from H2 Production

CO2 Emission Trail During the Manufacture of an H2 ICE Truck

  • Key Components of an H2 ICE Truck
  • Vehicle Architecture Comparison: Diesel vs H2 ICE
  • Major Components in an H2 ICE Truck by Weight
  • CO2 Emission Trail in Manufacturing an H2 ICE Truck

Growth Generator: CO2 Emission Trail During the Operation of an H2 ICE-MDT

  • Use Case Characteristics and Forecast Assumptions
  • Cycle A and H: H2 Consumption and CO2 Emissions
  • Cycle A to H: kg CO2 per Mile

Growth Generator: CO2 Emission Trail During the Operation of an H2 ICE-HDT

  • Use Case Characteristics and Forecast Assumptions
  • Cycle A: Spark Ignition
  • Cycle A: High-pressure Direct Injection
  • Cycle H: Spark Ignition
  • Cycle H: High-pressure Direct Injection
  • Cycle A to H: kg CO2 per Mile

CO2 Emission Trail Comparison Between ICE Vehicles, BEVs, and H2 ICE Vehicles

  • MDT: ICE, BEV, FCEV, and H2 ICE Comparison Cycle A and H
  • HDT: ICE, BEV, FCEV, and H2 ICE Comparison Cycle A and H

Key Takeaways

  • Top 3 Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Alternative Low-emission Technology
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer