封面
市場調查報告書
商品編碼
1725033

2024-2040年歐盟氫動力卡車(H2 ICE)產業二氧化碳排放生命週期

CO2 Emissions Life Cycle in the Hydrogen ICE Truck Sector, EU, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 42 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

採用 H2 ICE 作為清潔的 H2 生產源和中間解決方案將顯著減少二氧化碳排放並推動轉型成長

在這項研究中,Frost & Sullivan排放。該分析首先提出了考慮氫氣的理由,強調了與傳統燃料相比氫氣在減少生命週期排放方面的潛力。

Frost & Sullivan 深入研究了各種氫氣生產方法,從灰氫到再生能源來源,每種方法都有不同的碳足跡。它重點關注與 H2 ICE 生產相關的二氧化碳排放,並指出 H2 引擎和儲氫儲存槽等部件是主要貢獻者。此外,該研究還對電池電動卡車、燃料電池電動卡車和柴油卡車進行了比較分析,以預測卡車運行期間的二氧化碳總排放。

該研究強調,迫切需要轉向更清潔的氫氣生產方法並最佳化汽車製造,以便在卡車領域大幅減少排放排放。

研究期間為2023年至2030年。

目錄

轉型

  • 為何成長變得越來越困難?
  • 策略要務
  • 三大策略要務對氫燃料卡車產業生命週期二氧化碳排放的影響

成長環境:H2生態系統

  • H2是未來的燃料
  • H2 ICE 卡車生命週期二氧化碳流量
  • 生產氫氣的不同方法
  • 主要燃料特性比較
  • 引擎主要參數對比
  • H2 ICE 的燃料噴射方法

研究範圍和細分

  • 研究範圍
  • 動力傳動系統技術細分
  • 成長動力
  • 成長抑制因素

氫氣生產過程中的二氧化碳排放

  • 主要氫氣生產方法分析
  • 影響氫氣生產途徑採用的關鍵因素-清潔氫氣生產能力的釋放與消費量
  • 影響H2生產途徑實施的關鍵因素-歐洲氫能骨幹網路EHB與關鍵走廊
  • 西班牙H2產量預測
  • H2產量引入預測-法國
  • 德國H2產量預測
  • 氫氣生產過程中二氧化碳排放軌跡

氫燃料卡車製造的二氧化碳排放軌跡

  • H2 ICE卡車的關鍵零件
  • 車輛架構比較 - 柴油與 H2 ICE
  • H2 ICE卡車主要部件的重量分佈
  • 二氧化碳排放軌跡 - H2 ICE 卡車製造

H2 ICE 運作期間的二氧化碳排放軌跡:MDT

  • MDT 用例特徵和預測假設
  • MDT循環A,H-H2消費量與CO2排放
  • MDT 循環 A 至 H - 每英里二氧化碳排放

氫燃料汽車運作期間的二氧化碳排放軌跡:HDT

  • HDT使用案例特徵和預測假設
  • HDT循環A,火花點火SI
  • HDT循環A、高壓直噴
  • HDT循環H,火花點火SI
  • HDT循環H、高壓缸內直噴
  • HDT循環A至H-kgCO2/Km

ICE、BEV、FCEV 和 H2 ICE 的二氧化碳排放軌跡比較

  • MDT - ICE、BEV、FCEV 和 H2 ICE 循環 A 和 H 的比較
  • HDT - ICE、BEV、FCEV 和 H2 ICE 循環 A 和 H 的比較

關鍵要點:

  • 前三名

成長機會宇宙

  • 成長機會1:追蹤二氧化碳排放
  • 成長機會2:替代低排放技術
  • 成長機會3:擴大氫能基礎設施

附錄:後續步驟

  • 成長機會的益處和影響
  • 後續步驟Next steps
  • 免責聲明
簡介目錄
Product Code: PFQV-42

Clean H2 Production Sources and the Adoption of H2 ICE as an Intermediate Solution Will Drive Transformational Growth by Significantly Reducing CO2 Emissions

In this study, Frost & Sullivan offers a comprehensive exploration of the carbon dioxide (CO2) trail of a hydrogen ICE truck (H2 ICE) by investigating the carbon emission implications, focusing on hydrogen as a prospective fuel for the trucking industry in 3 countries within the European Union-France, Germany, and Spain. The analysis begins with the rationale for considering hydrogen, highlighting its potential to mitigate life cycle emissions in comparison to conventional fuels.

Frost & Sullivan delves into various hydrogen production methods, ranging from gray hydrogen to renewable sources, each carrying distinct carbon footprints. The emphasis is on the CO2 emissions associated with manufacturing H2 ICE vehicles, pinpointing significant contributions from components such as H2 engines and hydrogen storage tanks. Furthermore, the study projects total CO2 emissions throughout truck operations, drawing comparative insights with its battery electric, fuel cell electric truck, and diesel truck counterparts.

The study underscores the urgency of transitioning to cleaner hydrogen production methods and optimizing vehicle manufacturing to achieve substantial CO2 emission reductions in the trucking sector.

The study period is from 2023 to 2030.

Table of Contents

Transformation

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative
  • The Impact of the Top 3 Strategic Imperatives on the CO2 Emissions Life Cycle in the Hydrogen ICE H2 ICE Truck Industry

Growth Environment: H2 Ecosystem

  • H2 is the Fuel of the Future
  • Life Cycle CO2 Flow of an H2 ICE Truck
  • Different Methods of Producing H2
  • Key Fuel Characteristics' Comparison
  • Key Engine Parameters' Comparison
  • H2 ICE Fuel Injection Methods

Scope and Segmentation

  • Research Scope
  • Powertrain Technology Segmentation
  • Growth Drivers
  • Growth Restraints

CO2 Emissions Trail During Hydrogen Production

  • Analysis of Major H2 Production Methods
  • Key Factors Impacting H2 Production Pathway Adoption-Announced Clean H2 Capacities and Consumption
  • Key Factors Impacting H2 Production Pathway Adoption-European Hydrogen Backbone EHB and Key Corridors
  • Adoption Forecast of H2 Production-Spain
  • Adoption Forecast of H2 Production-France
  • Adoption Forecast of H2 Production-Germany
  • CO2 Emissions Trail from H2 Production

CO2 Emissions Trail During H2 ICE Truck Manufacturing

  • Key Components of an H2 ICE Truck
  • Vehicle Architecture Comparison-Diesel Versus H2 ICE
  • Weight-wise Split of Major Components in an H2 ICE Truck
  • CO2 Emissions Trail-Manufacturing an H2 ICE Truck

CO2 Emissions Trail During H2 ICE Operations: MDTs

  • MDT Use Case Characteristics and Forecast Assumptions
  • MDT Cycles A and H-H2 Consumption and CO2 Emissions
  • MDT Cycles A to H-kgCO2 per Mile

CO2 Emissions Trail During H2 ICE Operations: HDTs

  • HDT Use Case Characteristics and Forecast Assumptions
  • HDT-Cycle A, Spark Ignition SI
  • HDT-Cycle A, High-pressure Direct Injection
  • HDT-Cycle H, Spark Ignition SI
  • HDT-Cycle H, High-pressure Direct Injection
  • HDT Cycles A to H-kgCO2 Per Km

CO2 Emissions Trail Comparison Among ICE Vehicles, BEVs, FCEVs, and H2 ICEs

  • MDT-ICE, BEV, FCEV, and H2 ICE Comparison Cycles A and H
  • HDT-ICE, BEV, FCEV, and H2 ICE Comparison Cycles A and H

Key Takeaways

  • Top 3 Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Alternative Low-emission Technology
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Legal Disclaimer