![]() |
市場調查報告書
商品編碼
1725020
全球人工智慧IT服務成長機會Global Artificial Intelligence Information Technology Services Growth Opportunities |
IT服務供應商在加速人工智慧應用方面發揮關鍵作用
全球人工智慧IT服務成長機會研究對全球人工智慧IT服務的現狀和未來前景進行了全面的分析。該研究借鑒了最近對商業決策者進行的一項調查的結果,確定了影響全球行業的關鍵促進因素和限制因素。
在策略方面,我們正在探索服務供應商如何透過增強諮詢和顧問服務、利用基礎模型提供特定於人工智慧的服務以及開發端到端人工智慧功能來實現差異化。該研究強調了透過開發特定產業的解決方案和採用解決道德、環境和社會問題的負責任的人工智慧實踐來確保永續成長的重要性。
分析重點介紹了塑造人工智慧 IT 服務市場的關鍵參與企業及其提供客戶價值的策略。最後,它確定了可行的成長機會,包括產業專用的人工智慧解決方案、整合服務以及諮詢和策略諮詢服務,為服務供應商提供了利用一些不斷變化的市場需求的藍圖。
人工智慧對IT服務業三大策略挑戰的影響
內部挑戰
為什麼?
弗羅斯特的觀點
顛覆性技術
為什麼? :
弗羅斯特的觀點
競爭日益激烈
為什麼? :
弗羅斯特的觀點
成長動力
人工智慧能夠從全球不斷成長的企業和客戶數據中提取價值,這將推動其應用
數據的快速成長是推動人工智慧服務普及的關鍵因素。物聯網設備的激增和數位足跡的不斷擴大導致數據量呈指數級成長,全球企業迫切需要人工智慧工具。這些工具可以處理和分析數據、發現模式和相關性,並得出有意義的見解,從而可以在時間緊迫的情況下發現新的競爭優勢。
成本節約和效率提升是推動人工智慧應用的強大經濟驅動力
越來越多的企業意識到人工智慧自動化的潛力,它可以顯著降低營運成本,同時提高預測和決策的準確性。人工智慧系統的一致營運能力使其成為尋求最佳化營運和資源配置的企業有吸引力的投資。
成熟技術推動市場成長
運算能力和 GPU 功能的不斷提升,使得 AI 系統更加強大、有效率。隨著 AI/ML 演算法和 LLM 的進步,AI 解決方案現在可以提供更可預測的結果,並實現自動化和更高的效率。此外,預先訓練的模型和工具的可用性最大限度地減少了技術障礙並使人工智慧解決方案能夠快速採用。雲端處理基礎設施的增強使得各種規模的組織能夠更輕鬆地存取和擴展這些功能。
成長抑制因素
實現人工智慧和機器學習演算法所需的乾淨數據有限
AI 和 ML 演算法的成功取決於可用的企業資料的品質。在全球人工智慧 IT 服務日益成長的機會中,乾淨、標準化的數據對於技術創造價值和實現業務成果至關重要。對於大多數採用人工智慧的企業來說,取得乾淨、可用的資料集是一項挑戰。
明確的投資收益(ROI)
公司不願採用人工智慧解決方案,因為他們無法估計投資報酬率。因此,供應商需要幫助企業預測部署AI解決方案的投資報酬率。
缺乏領導承諾
人工智慧服務需要在人力、技術和基礎設施方面進行大量投資。如果沒有強力的領導承諾,人工智慧舉措的預算分配將仍然有限,而沒有統一策略的人工智慧投資將導致效率低下和零碎的人工智慧採用。
法律規範和道德規範缺乏明確性
監管和道德問題,包括限制存取預先匿名資料的隱私考慮、智慧財產權問題、缺乏演算法透明度、演算法偏見以及工作安全擔憂,阻礙了人工智慧市場的成長。
IT Service Providers are Playing an Important Role in Accelerating AI Deployments
The Global Artificial Intelligence Information Technology Services Growth Opportunities study provides a comprehensive analysis of the current landscape and the future prospects of AI IT services worldwide. It draws on insights from a recent enterprise decision-maker survey and identifies key drivers and restraints shaping the industry globally.
Strategically, the study explores how service providers can differentiate themselves by strengthening advisory and consulting services, leveraging foundational models to create specialized AI offerings, and developing end-to-end AI capabilities. The study underscores the importance of developing industry-specific solutions and adopting responsible AI practices to address ethical, environmental, and social considerations, ensuring sustainable growth.
The analysis highlights key participants shaping the AI IT services market and their strategies to deliver client value. Finally, the study identifies actionable growth opportunities, such as industry-specific AI solutions, integration services, and consulting and strategic advisory services, providing a roadmap for service providers to capitalize on some of the evolving market demands.
The Impact of the Top 3 Strategic Imperatives on the AI Information Technology Services Industry
Internal Challenges
Why:
Frost Perspective:
Disruptive Technologies
Why:
Frost Perspective:
Competitive Intensity
Why:
Frost Perspective:
Growth Drivers
AI's Ability to Unlock Value from the Growing Global Volumes of Enterprise and Customer Data Drives its Uptake
Data proliferation has become a significant catalyst for AI service adoption. Data's exponential growth, driven by increased IoT device adoption and expanding digital footprints, has generated an urgent need for AI tools in enterprises globally. These tools process, analyze, find patterns and correlations, and derive meaningful insights, uncovering new competitive advantages in a limited time.
Cost Reduction and Efficiency Improvements Represent Compelling Economic Drivers for AI Adoption
A growing number of enterprises recognize AI automation's potential to significantly reduce operational costs while improving accuracy in predictions and decision-making. AI systems' ability to operate consistently has made them attractive investments for businesses seeking to optimize their operations and resource allocation.
Maturing Technologies Drive Market Growth
Continuous improvements in computing power and GPU capabilities have made AI systems more powerful and efficient. Owing to advancements in AI/ML algorithms and LLMs, AI solutions now offer more predictable outcomes, enabling automation and higher efficiencies. In addition, the availability of pre-trained models and tools minimizes technological barriers and supports faster AI solution adoption. Enhanced cloud computing infrastructure has made these capabilities more accessible and scalable for organizations of all sizes.
Growth Restraints
Limited Availability of Clean Data to Implement AI and ML Algorithms
AI and ML algorithms' success depends on the quality of available enterprise data. Clean and standardized data is pivotal to **Title:** Global Artificial Intelligence Information Technology Services Growth Opportunities technologies' ability to deliver value and business outcomes. Accessing clean and usable datasets is challenging for most enterprises adopting AI.
Clear Return on Investment (ROI)
Enterprises are reluctant to adopt AI solutions as they cannot estimate the ROI, mainly because the high initial investment increases costs before the expected return date. Thus, vendors must help enterprises foresee the ROI in implementing AI solutions.
Lack of Leadership Commitment
AI services require significant investments in talent, technology, and infrastructure. Without strong leadership commitment, budget allocation for AI initiatives will remain limited, and investing in AI without a unified strategy will lead to inefficiencies and fragmented AI adoption.
Lack of Clarity Concerning Regulatory Frameworks and Ethical Practices
Regulatory and ethical issues, such as privacy considerations that restrict access to data before anonymization, intellectual property issues, a lack of algorithm transparency, algorithm biases, and job security concerns, will hinder the AI market's growth.