![]() |
市場調查報告書
商品編碼
1368215
汽車產業量子運算用途策略概述Strategic Overview of Quantum Computing Applications in the Automotive Industry |
新產品開發計劃專注於製程最佳化和先進材料研究
該分析重點關注汽車行業中的量子計算創新,以及將該技術整合到供應鏈、材料研究、車輛設計、車輛測試、組裝、製造、零售、售後和車輛行駛中的重要性。我猜。與量子運算處理器整合的模擬可以幫助汽車更快地分析多個預生產場景,並具有更高的準確性和更快的交付時間,從而獲得競爭優勢。量子運算還可以幫助在量子層級上模擬電池材料的複雜分子特性以及反應和行為,使OEM能夠使用新型永續材料設計低成本電池。
該技術還可以幫助最佳化交通管理和車輛路線。 BMW、福斯、豐田、現代、戴姆勒和福特正在針對某些使用案例試點量子計算。儘管具有較小變數集的概念驗證(POC)看起來很有希望,但未來的計劃將需要擴大基礎設施、量子位元品質和複雜參數集的使用。在投資量子研究之前,確定正確的使用案例非常重要。 OEM應該與專業服務專家合作,幫助他們發現問題、開發概念驗證,並最終整合到日常生產流程中。然而,高昂的投資成本和現有的合適技術(用於數位化汽車價值鏈)目前阻礙了OEM實施動態。透過確定正確的用例並採用量子和經典計算的混合模型,OEM可以兩全其美。該分析整體情況了量子計算以及當前阻礙汽車行業量子發展勢頭的挑戰。我們分析OEM合作夥伴關係和關鍵使用案例。
New Product Development Initiatives to Focus on Process Optimization and Advanced Materials Research
This analytics highlights quantum computing innovation in the automotive industry and the significance of integrating this technology in supply chain, materials research, vehicle design, vehicle testing, assembly, manufacturing, retail, after-sales, and vehicle-in-motion. Simulations integrated with quantum computing processors analyze multiple pre-production scenarios substantially faster; they are more accurate and have a shorter turnaround time, helping automakers stay ahead of the competition. Quantum computing also helps simulate complex molecular properties and battery material reactions and behaviors at the quantum level and can enable OEMs to design low-cost batteries with new, sustainable materials.
The technology can help optimize traffic management and vehicle routing. BMW, VW, Toyota, Hyundai, Daimler, and Ford are piloting (in partnership) quantum computing for select use cases. Though the proof-of-concept (Poc) for a smaller set of variables looked promising, the future plan will involve scaling up the infrastructure, qubits quality, and using complex sets of parameters. Identifying the right use case is critical before investing in quantum research. OEMs should partner with professional services experts that can help with problem identification through proof-of-concept development and eventually integration into day-to-day production processes. However, huge investment costs and existing pertinent technologies (to digitize the automotive value chain) are currently hindering quantum adoption among OEMs. Right use case identification, coupled with a hybrid quantum-classical computing model, will enable OEMs to achieve the best of both worlds. This analytics presents the overall scope of quantum computing and the current challenges hindering quantum momentum in the automotive industry. It analyzes OEM partnerships and key use cases.