重要材料回收的全球市場(2026年~2046年)
市場調查報告書
商品編碼
1811145

重要材料回收的全球市場(2026年~2046年)

The Global Critical Materials Recovery Market 2026-2046

出版日期: | 出版商: Future Markets, Inc. | 英文 358 Pages, 118 Tables, 55 Figures | 訂單完成後即時交付

價格

關鍵材料回收市場是一個快速發展的行業,專注於從電子垃圾、廢棄電池、工業副產品和報廢產品等二次資源中提取有價值的金屬和礦物。該市場的興起是對日益加劇的供應鏈脆弱性、圍繞礦產資源的地緣政治緊張局勢以及日益電氣化的全球經濟中對可持續材料流動的迫切需求的戰略性回應。

該市場的主要驅動力是清潔能源技術、電動車和先進電子產品對關鍵材料日益增長的需求。鋰、鈷、鎳、稀土元素、鉑族金屬以及鎵和銦等半導體材料對於風力渦輪機、太陽能電池板、電動車電池和電子設備至關重要。傳統採礦面臨資源枯竭、環境問題以及供應鏈往往集中在一個國家等課題,這使得二次回收越來越具有吸引力。

目前的市場預測顯示,到2046年,全球關鍵材料回收產業將實現顯著增長,其中鋰離子電池回收預計將在數量和價值方面佔主導地位。該市場涵蓋多種材料流,其中電池回收佔最大佔有率,其次是稀土磁體回收、從電子垃圾中提取半導體材料以及從汽車催化劑中回收鉑族金屬。

回收過程通常分為兩個主要階段:萃取和回收。萃取技術包括濕式冶金、火法冶金、生物冶金以及離子液體和超臨界流體萃取等新方法。回收技術包括溶劑萃取、離子交換、電解沉積、沉澱和直接回收。每種方法在效率、環境影響和經濟性方面都各有優勢和課題。

濕式冶金目前在商業營運中佔主導地位,因為它比火法冶金更具多功能性,而且能耗更低。然而,直接回收技術,尤其是電池正極材料和稀土磁體的直接回收技術,因其能夠保留材料結構並減少加工步驟而備受關注。

市場可依材料類型、來源及回收方法細分。電池回收主要著重於從廢棄電動車 (EV) 和消費性電子產品電池中回收鋰、鈷、鎳和錳。稀土回收的目標是從風力渦輪機和電動馬達的永久磁鐵中回收釹、鏑和铽。半導體回收則從電子垃圾和太陽能板中回收鎵、銦、鍺和碲。鉑族金屬回收則專注於汽車催化劑和新興的氫燃料電池應用。

經濟可行性因材料類型和地區而異。鉑族金屬和稀土等高價值材料通常具有良好的回收經濟效益,而鋰等低價值材料則需要提高規模和效率。監管架構越來越多地要求回收目標和延伸生產者責任,尤其是在歐洲、中國和北美部分地區。

支持循環經濟原則和供應鏈韌性的政府政策正在加速市場發展。歐盟的 "關鍵原料法案" 、美國的 "關鍵礦產倡議" 以及中國的 "回收政策" 正在為支持二次材料回收創造監管動力。

關鍵課題包括開發回收基礎設施、擴大技術規模、與初級生產進行經濟競爭以及處理複雜的廢物流。許多關鍵材料在混合廢棄物中的濃度較低,需要先進的分離技術,而且通常使回收變得無利可圖。到2046年,市場軌跡顯示出持續擴張,這得益於廢棄物可用性的增加、技術改進和政策支援的推動。隨著第一代電動車電池在2030-2035年左右達到使用壽命,電池回收預計將大幅成長。稀土回收可能會受益於日益增長的磁性廢物流和供應安全擔憂。要在這個市場取得成功,需要平衡技術創新與經濟現實,並建立強大的回收和加工基礎設施,以最大限度地發揮二次關鍵材料資源的潛力。

本報告分析了全球關鍵材料回收市場,提供了有關鋰離子電池回收、稀土元素回收、半導體材料提取和鉑族金屬回收等領域的回收技術、市場預測、監管格局和競爭動態的資訊。

目錄

第1章 摘要整理

  • 關鍵原料的定義與重要性
  • 電子垃圾作為關鍵原料的來源
  • 電氣化、再生能源和清潔技術
  • 監理格局
  • 主要市場驅動因素與限制因素
  • 全球關鍵原料市場 (2025)
  • 關鍵材料萃取技術
  • 關鍵原物料價值鏈
  • 關鍵原料回收的經濟問題
  • 主要回收材料的價格趨勢 (2020-2024)
  • 全球市場預測

第2章 簡介

  • 關鍵原料
  • 全球供應與貿易概況
  • 循環經濟
  • 能源轉型的關鍵策略原料
  • 關鍵材料回收的現有和新興二次來源
  • 從二次來源回收關鍵材料的商業模式
  • 加工和提取的金屬和礦物
  • 回收來源

第3章 半導體的重要原料的回收

  • 關鍵半導體材料
  • 電子垃圾
  • 光電技術
  • 電子垃圾中關鍵原料的濃度與價值
  • 關鍵原料的用途與重要性
  • 廢棄物回收再利用流程
  • 收集和分類基礎設施
  • 預處理技術
  • 金屬回收技術
  • 全球市場(2025-2046)

第4章 鋰離子電池的重要原料的回收

  • 關鍵鋰離子電池金屬
  • 關鍵鋰離子電池技術的金屬回收
  • 鋰離子電池回收價值鏈
  • 黑色粉末
  • 不同正極材料的回收
  • 製備
  • 預處理
  • 回收技術比較
  • 濕式冶金
  • 火法冶金
  • 直接回收
  • 其他方法
  • 特定部件的回收
  • 非鋰離子電池的回收
  • 鋰離子電池回收的經濟問題
  • 競爭格局
  • 全球產能目前及規劃
  • 未來展望
  • 全球市場 (2025-2046)

第5章 重要稀土元素元素的回收

  • 引言
  • 永久磁鐵應用
  • 回收技術
  • 從廢棄稀土磁鐵中回收利用技術
  • 市場
  • 全球市場 (2025-2046)

第6章 重要鉑族金屬的回收

  • 簡介
  • 供應鏈
  • 價格
  • PGM回收
  • 來自使用後汽車用催化劑的PGM回收
  • 從氫電解器和燃料電池中回收鉑族金屬
  • 市場
  • 全球市場(2025年~2046年)

第7章 企業簡介(166家企業的簡介)

第8章 附錄

第9章 參考文獻

The critical materials recovery market represents a rapidly expanding sector focused on extracting valuable metals and minerals from secondary sources such as electronic waste, spent batteries, industrial by-products, and end-of-life products. This market has emerged as a strategic response to growing supply chain vulnerabilities, geopolitical tensions surrounding mineral resources, and the urgent need for sustainable material flows in an increasingly electrified global economy.

The market is primarily driven by the accelerating demand for critical materials in clean energy technologies, electric vehicles, and advanced electronics. Lithium, cobalt, nickel, rare earth elements, platinum group metals, and semiconductor materials like gallium and indium have become essential for wind turbines, solar panels, EV batteries, and electronic devices. Traditional mining faces mounting challenges including resource depletion, environmental concerns, and concentrated supply chains often controlled by single countries, making secondary recovery increasingly attractive.

Current market forecasts suggest the global critical materials recovery sector will experience substantial growth through 2046, with lithium-ion battery recycling expected to dominate by volume and value. The market encompasses multiple material streams, with battery recycling representing the largest segment, followed by rare earth magnet recovery, semiconductor material extraction from e-waste, and platinum group metal recovery from automotive catalysts.

The recovery process typically involves two main stages: extraction and recovery. Extraction technologies include hydrometallurgy, pyrometallurgy, biometallurgy, and emerging approaches like ionic liquids and supercritical fluid extraction. Recovery technologies encompass solvent extraction, ion exchange, electrowinning, precipitation, and direct recycling methods. Each approach presents distinct advantages and challenges regarding efficiency, environmental impact, and economic viability.

Hydrometallurgical processes currently dominate commercial operations due to their versatility and lower energy requirements compared to pyrometallurgical methods. However, direct recycling technologies are gaining attention for their potential to preserve material structure and reduce processing steps, particularly for battery cathode materials and rare earth magnets.

The market can be segmented by material type, source, and recovery method. Battery recycling focuses primarily on lithium, cobalt, nickel, and manganese recovery from spent EV and consumer electronics batteries. Rare earth recovery targets neodymium, dysprosium, and terbium from permanent magnets in wind turbines and electric motors. Semiconductor recovery addresses gallium, indium, germanium, and tellurium from electronic waste and photovoltaic panels. Platinum group metal recovery concentrates on automotive catalysts and emerging hydrogen fuel cell applications.

Economic viability varies significantly across material types and regions. High-value materials like platinum group metals and rare earths generally offer better recovery economics, while lower-value materials like lithium require scale and efficiency improvements. Regulatory frameworks increasingly mandate recycling targets and extended producer responsibility, particularly in Europe, China, and parts of North America.

Government policies supporting circular economy principles and supply chain resilience are accelerating market development. The EU's Critical Raw Materials Act, US critical minerals initiatives, and China's recycling policies create regulatory momentum supporting secondary material recovery.

Key challenges include collection infrastructure development, technology scaling, economic competitiveness with primary production, and handling complex waste streams. Many critical materials exist in low concentrations within mixed waste, requiring sophisticated separation technologies and often making recovery economically marginal. The market trajectory toward 2046 suggests continued expansion driven by increasing waste availability, technological improvements, and policy support. Battery recycling is expected to scale dramatically as first-generation EV batteries reach end-of-life around 2030-2035. Rare earth recovery will likely benefit from growing magnet waste streams and supply security concerns. Success in this market requires balancing technological innovation with economic realities, while building robust collection and processing infrastructure to capture the full potential of secondary critical material resources.

"The Global Critical Materials Recovery Market 2026-2046" provides comprehensive analysis of the rapidly expanding critical raw materials recycling industry, driven by supply chain vulnerabilities, electrification trends, and circular economy imperatives. This authoritative report examines recovery technologies, market forecasts, regulatory landscapes, and competitive dynamics across lithium-ion battery recycling, rare earth element recovery, semiconductor material extraction, and platinum group metal reclamation.

Report contents include:

  • Definition and strategic importance of critical raw materials in global supply chains
  • Electronic waste as emerging source of valuable materials with recovery rate analysis
  • Electrification and renewable energy technology material requirements
  • Comprehensive regulatory landscape mapping across 11 major countries and global initiatives
  • Market drivers, restraints, and growth opportunities through 2046
  • Technology readiness evaluation and performance metrics for extraction methods
  • Critical materials value chain analysis from collection to refined product delivery
  • Economic case studies and price trend analysis for key recovered materials (2020-2024)
  • 20-year global market forecasts by material type, recovery source, and region (2026-2046)
  • Technology Analysis & Innovation
    • Comprehensive coverage of 17 critical materials including demand trends and applications
    • Primary versus secondary production comparison with environmental impact assessment
    • Advanced extraction technologies: hydrometallurgy, pyrometallurgy, biometallurgy analysis
    • Emerging technologies: ionic liquids, electroleaching, supercritical fluid extraction
    • Recovery methods: solvent extraction, ion exchange, electrowinning, precipitation, biosorption
    • Direct recycling approaches for batteries and rare earth magnets
    • SWOT analysis for each technology category with commercialization readiness assessment
  • Market Segments & Applications
    • Semiconductor materials recovery from e-waste and photovoltaic systems
    • Collection infrastructure, pre-processing technologies, and metal recovery processes
    • Lithium-ion battery recycling value chain with cathode chemistry analysis
    • Mechanical, thermal, and chemical pre-treatment methods
    • Hydrometallurgical, pyrometallurgical, and direct recycling process comparison
    • Beyond lithium-ion battery technologies including solid-state and lithium-sulfur systems
    • Rare earth element recovery from permanent magnets and electronic components
    • Long-loop versus short-loop recycling methods with hydrogen decrepitation analysis
    • Platinum group metal recovery from automotive catalysts and fuel cell systems
    • Regional market forecasts with capacity analysis and competitive landscape mapping
  • Company Profiles: The report features comprehensive profiles of 166 industry leaders including Accurec Recycling GmbH, ACE Green Recycling, Altilium, American Battery Technology Company (ABTC), Anhua Taisen, Aqua Metals Inc., Ascend Elements, Attero, Australian Strategic Materials Ltd (ASM), BacTech Environmental Corporation, Ballard Power Systems, BANIQL, BASF, Battery Pollution Technologies, Batx Energies Private Limited, Berkeley Energia, BHP, BMW, Botree Cycling, Brazilian Nickel PLC, Carester, Ceibo, Cheetah Resources, CATL, Cirba Solutions, Circunomics, Circu Li-ion, Circular Industries, Cyclic Materials, Cylib, Dowa Eco-System Co., Dow Chemicals, Dundee Sustainable Technologies, DuPont, EcoBat, eCobalt Solutions, EcoGraf, Econili Battery, EcoPro, Ecoprogetti, Electra Battery Materials Corporation (Electra), Electramet, Elmery, Element Zero, Emulsion Flow Technologies, Enim, EnviroMetal Technologies, Eramet, Exigo Recycling, Exitcom Recycling, ExPost Technology, Farasis Energy, First Solar, Fortum Battery Recycling, 4R Energy Corporation, Freeport McMoRan, Fluor, FLSmidth, Ganfeng Lithium, Ganzhou Cyclewell Technology Co. Ltd, Garner Products, GEM Co. Ltd., GLC Recycle Pte. Ltd., Glencore, Gotion, GREEN14, Green Graphite Technologies, Green Li-ion, Green Mineral, GS Group, Guangdong Guanghua Sci-Tech, Huayou Cobalt, Henkel, Heraeus, Huayou Recycling, HydroVolt, HyProMag Ltd, InoBat, Inmetco, Ionic Technologies, Jiecheng New Energy, JL Mag, JPM Silicon GmbH, JX Nippon Metal Mining, Keyking Recycling, Korea Zinc, Kyoei Seiko, Igneo, IXOM, Jervois Global, Jetti Resources, Kemira Oyj, Librec AG, Lithium Australia, LG Chem Ltd., Li-Cycle, Li Industries, Lithion Technologies, Lohum, MagREEsource, Mecaware, Metastable Materials, Metso Corporation, Minerva Lithium, Mining Innovation Rehabilitation and Applied Research (MIRARCO), Mitsubishi Materials, Neometals and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Definition and Importance of Critical Raw Materials
  • 1.2. E-Waste as a Source of Critical Raw Materials
  • 1.3. Electrification, Renewable and Clean Technologies
  • 1.4. Regulatory Landscape
    • 1.4.1. European Union
    • 1.4.2. United States
    • 1.4.3. China
    • 1.4.4. Japan
    • 1.4.5. Australia
    • 1.4.6. Canada
    • 1.4.7. India
    • 1.4.8. South Korea
    • 1.4.9. Brazil
    • 1.4.10. Russia
    • 1.4.11. Global Initiatives
  • 1.5. Key Market Drivers and Restraints
  • 1.6. The Global Critical Raw Materials Market in 2025
  • 1.7. Critical Material Extraction Technology
    • 1.7.1. TRL of critical material extraction technologies
    • 1.7.2. Value Proposition
    • 1.7.3. Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste)
    • 1.7.4. Critical rare-earth element recovery from secondary sources
    • 1.7.5. Li-ion battery technology metal recovery
    • 1.7.6. Critical semiconductor materials recovery
    • 1.7.7. Critical platinum group metal recovery
    • 1.7.8. Critical platinum Group metal recovery
  • 1.8. Critical Raw Materials Value Chain
  • 1.9. The Economic Case for Critical Raw Materials Recovery
  • 1.10. Price Trends for Key Recovered Materials (2020-2024)
  • 1.11. Global market forecasts
    • 1.11.1. By Material Type (2025-2046)
    • 1.11.2. By Recovery Source (2025-2046)
    • 1.11.3. By Region (2025-2046)

2. INTRODUCTION

  • 2.1. Critical Raw Materials
  • 2.2. Global situation in supply and trade
  • 2.3. Circular economy
    • 2.3.1. Circular use of critical raw materials
  • 2.4. Critical and strategic raw materials used in the energy transition
    • 2.4.1. Greening critical metals
  • 2.5. Established and emerging secondary sources for critical material recovery
  • 2.6. Business models for critical material recovery from secondary sources
  • 2.7. Metals and minerals processed and extracted
    • 2.7.1. Copper
      • 2.7.1.1. Global copper demand and trends
      • 2.7.1.2. Markets and applications
      • 2.7.1.3. Copper extraction and recovery
    • 2.7.2. Nickel
      • 2.7.2.1. Global nickel demand and trends
      • 2.7.2.2. Markets and applications
      • 2.7.2.3. Nickel extraction and recovery
    • 2.7.3. Cobalt
      • 2.7.3.1. Global cobalt demand and trends
      • 2.7.3.2. Markets and applications
      • 2.7.3.3. Cobalt extraction and recovery
    • 2.7.4. Rare Earth Elements (REE)
      • 2.7.4.1. Global Rare Earth Elements demand and trends
      • 2.7.4.2. Markets and applications
      • 2.7.4.3. Rare Earth Elements extraction and recovery
      • 2.7.4.4. Recovery of REEs from secondary resources
    • 2.7.5. Lithium
      • 2.7.5.1. Global lithium demand and trends
      • 2.7.5.2. Markets and applications
      • 2.7.5.3. Lithium extraction and recovery
    • 2.7.6. Gold
      • 2.7.6.1. Global gold demand and trends
      • 2.7.6.2. Markets and applications
      • 2.7.6.3. Gold extraction and recovery
    • 2.7.7. Uranium
      • 2.7.7.1. Global uranium demand and trends
      • 2.7.7.2. Markets and applications
      • 2.7.7.3. Uranium extraction and recovery
    • 2.7.8. Zinc
      • 2.7.8.1. Global Zinc demand and trends
      • 2.7.8.2. Markets and applications
      • 2.7.8.3. Zinc extraction and recovery
    • 2.7.9. Manganese
      • 2.7.9.1. Global manganese demand and trends
      • 2.7.9.2. Markets and applications
      • 2.7.9.3. Manganese extraction and recovery
    • 2.7.10. Tantalum
      • 2.7.10.1. Global tantalum demand and trends
      • 2.7.10.2. Markets and applications
      • 2.7.10.3. Tantalum extraction and recovery
    • 2.7.11. Niobium
      • 2.7.11.1. Global niobium demand and trends
      • 2.7.11.2. Markets and applications
      • 2.7.11.3. Niobium extraction and recovery
    • 2.7.12. Indium
      • 2.7.12.1. Global indium demand and trends
      • 2.7.12.2. Markets and applications
      • 2.7.12.3. Indium extraction and recovery
    • 2.7.13. Gallium
      • 2.7.13.1. Global gallium demand and trends
      • 2.7.13.2. Markets and applications
      • 2.7.13.3. Gallium extraction and recovery
    • 2.7.14. Germanium
      • 2.7.14.1. Global germanium demand and trends
      • 2.7.14.2. Markets and applications
      • 2.7.14.3. Germanium extraction and recovery
    • 2.7.15. Antimony
      • 2.7.15.1. Global antimony demand and trends
      • 2.7.15.2. Markets and applications
      • 2.7.15.3. Antimony extraction and recovery
    • 2.7.16. Scandium
      • 2.7.16.1. Global scandium demand and trends
      • 2.7.16.2. Markets and applications
      • 2.7.16.3. Scandium extraction and recovery
    • 2.7.17. Graphite
      • 2.7.17.1. Global graphite demand and trends
      • 2.7.17.2. Markets and applications
      • 2.7.17.3. Graphite extraction and recovery
  • 2.8. Recovery sources
    • 2.8.1. Primary sources
    • 2.8.2. Secondary sources
      • 2.8.2.1. Extraction
        • 2.8.2.1.1. Hydrometallurgical extraction
          • 2.8.2.1.1.1. Overview
          • 2.8.2.1.1.2. Lixiviants
          • 2.8.2.1.1.3. SWOT analysis
        • 2.8.2.1.2. Pyrometallurgical extraction
          • 2.8.2.1.2.1. Overview
          • 2.8.2.1.2.2. SWOT analysis
        • 2.8.2.1.3. Biometallurgy
          • 2.8.2.1.3.1. Overview
          • 2.8.2.1.3.2. SWOT analysis
        • 2.8.2.1.4. Ionic liquids and deep eutectic solvents
          • 2.8.2.1.4.1. Overview
          • 2.8.2.1.4.2. SWOT analysis
        • 2.8.2.1.5. Electroleaching extraction
          • 2.8.2.1.5.1. Overview
          • 2.8.2.1.5.2. SWOT analysis
        • 2.8.2.1.6. Supercritical fluid extraction
          • 2.8.2.1.6.1. Overview
          • 2.8.2.1.6.2. SWOT analysis
      • 2.8.2.2. Recovery
        • 2.8.2.2.1. Solvent extraction
          • 2.8.2.2.1.1. Overview
          • 2.8.2.2.1.2. Rare-Earth Element Recovery
          • 2.8.2.2.1.3. SWOT analysis
        • 2.8.2.2.2. Ion exchange recovery
          • 2.8.2.2.2.1. Overview
          • 2.8.2.2.2.2. SWOT analysis
        • 2.8.2.2.3. Ionic liquid (IL) and deep eutectic solvent (DES) recovery
          • 2.8.2.2.3.1. Overview
          • 2.8.2.2.3.2. SWOT analysis
        • 2.8.2.2.4. Precipitation
          • 2.8.2.2.4.1. Overview
          • 2.8.2.2.4.2. Coagulation and flocculation
          • 2.8.2.2.4.3. SWOT analysis
        • 2.8.2.2.5. Biosorption
          • 2.8.2.2.5.1. Overview
          • 2.8.2.2.5.2. SWOT analysis
        • 2.8.2.2.6. Electrowinning
          • 2.8.2.2.6.1. Overview
          • 2.8.2.2.6.2. SWOT analysis
        • 2.8.2.2.7. Direct materials recovery
          • 2.8.2.2.7.1. Overview
          • 2.8.2.2.7.2. Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis
          • 2.8.2.2.7.3. Rare-earth Magnet Recycling by Hydrogen Decrepitation
          • 2.8.2.2.7.4. Direct Recycling of Li-ion Battery Cathodes by Sintering
          • 2.8.2.2.7.5. SWOT analysis

3. CRITICAL RAW MATERIALS RECOVERY IN SEMICONDUCTORS

  • 3.1. Critical semiconductor materials
  • 3.2. Electronic waste (e-waste)
    • 3.2.1. Types of Critical Raw Materials found in E-Waste
  • 3.3. Photovoltaic and solar technologies
    • 3.3.1. Common types of PV panels and their critical semiconductor components
    • 3.3.2. Silicon Recovery Technology for Crystalline-Si PVs
    • 3.3.3. Tellurium Recovery from CdTe Thin-Film Photovoltaics
    • 3.3.4. Solar Panel Manufacturers and Recovery Rates
  • 3.4. Concentration and value of Critical Raw Materials in E-Waste
  • 3.5. Applications and Importance of Key Critical Raw Materials
  • 3.6. Waste Recycling and Recovery Processes
  • 3.7. Collection and Sorting Infrastructure
  • 3.8. Pre-Processing Technologies
  • 3.9. Metal Recovery Technologies
    • 3.9.1. Pyrometallurgy
    • 3.9.2. Hydrometallurgy
    • 3.9.3. Biometallurgy
    • 3.9.4. Supercritical Fluid Extraction
    • 3.9.5. Electrokinetic Separation
    • 3.9.6. Mechanochemical Processing
  • 3.10. Global market 2025-2046
    • 3.10.1. Ktonnes
    • 3.10.2. Revenues
    • 3.10.3. Regional

4. CRITICAL RAW MATERIALS RECOVERY IN LI-ION BATTERIES

  • 4.1. Critical Li-ion Battery Metals
  • 4.2. Critical Li-ion Battery Technology Metal Recovery
  • 4.3. Lithium-Ion Battery recycling value chain
  • 4.4. Black mass powder
  • 4.5. Recycling different cathode chemistries
  • 4.6. Preparation
  • 4.7. Pre-Treatment
    • 4.7.1. Discharging
    • 4.7.2. Mechanical Pre-Treatment
    • 4.7.3. Thermal Pre-Treatment
  • 4.8. Comparison of recycling techniques
  • 4.9. Hydrometallurgy
    • 4.9.1. Method overview
      • 4.9.1.1. Solvent extraction
    • 4.9.2. SWOT analysis
  • 4.10. Pyrometallurgy
    • 4.10.1. Method overview
    • 4.10.2. SWOT analysis
  • 4.11. Direct recycling
    • 4.11.1. Method overview
      • 4.11.1.1. Electrolyte separation
      • 4.11.1.2. Separating cathode and anode materials
      • 4.11.1.3. Binder removal
      • 4.11.1.4. Relithiation
      • 4.11.1.5. Cathode recovery and rejuvenation
      • 4.11.1.6. Hydrometallurgical-direct hybrid recycling
    • 4.11.2. SWOT analysis
  • 4.12. Other methods
    • 4.12.1. Mechanochemical Pretreatment
    • 4.12.2. Electrochemical Method
    • 4.12.3. Ionic Liquids
  • 4.13. Recycling of Specific Components
    • 4.13.1. Anode (Graphite)
    • 4.13.2. Cathode
    • 4.13.3. Electrolyte
  • 4.14. Recycling of Beyond Li-ion Batteries
    • 4.14.1. Conventional vs Emerging Processes
    • 4.14.2. Li-Metal batteries
    • 4.14.3. Lithium sulfur batteries (Li-S)
    • 4.14.4. All-solid-state batteries (ASSBs)
  • 4.15. Economic case for Li-ion battery recycling
    • 4.15.1. Metal prices
    • 4.15.2. Second-life energy storage
    • 4.15.3. LFP batteries
    • 4.15.4. Other components and materials
    • 4.15.5. Reducing costs
  • 4.16. Competitive landscape
  • 4.17. Global capacities, current and planned
  • 4.18. Future outlook
  • 4.19. Global market 2025-2046
    • 4.19.1. Chemistry
    • 4.19.2. Ktonnes
    • 4.19.3. Revenues
    • 4.19.4. Regional

5. CRITICAL RARE-EARTH ELEMENT RECOVERY

  • 5.1. Introduction
  • 5.2. Permanent magnet applications
  • 5.3. Recovery technologies
    • 5.3.1. Long-loop and short-loop recovery methods
    • 5.3.2. Hydrogen decrepitatio
    • 5.3.3. Powder metallurgy (PM)
    • 5.3.4. Long-loop magnet recycling
    • 5.3.5. Solvent Extraction
    • 5.3.6. Ion Exchange Resin Chromatography
    • 5.3.7. Electrolysis and Metallothermic Reduction
  • 5.4. Technologies for recycling rare earth magnets from waste
  • 5.5. Markets
    • 5.5.1. Rare-earth magnet market
    • 5.5.2. Rare-earth magnet recovery technology
  • 5.6. Global market 2025-2046
    • 5.6.1. Ktonnes
    • 5.6.2. Revenues

6. CRITICAL PLATINUM GROUP METAL RECOVERY

  • 6.1. Introduction
  • 6.2. Supply chain
  • 6.3. Prices
  • 6.4. PGM Recovery
  • 6.5. PGM recovery from spent automotive catalysts
  • 6.6. PGM recovery from hydrogen electrolyzers and fuel cells
    • 6.6.1. Green hydrogen market
    • 6.6.2. PGM recovery from hydrogen-related technologies
    • 6.6.3. Catalyst Coated Membranes (CCMs)
    • 6.6.4. Fuel cell catalysts
    • 6.6.5. Emerging technologies
      • 6.6.5.1. Microwave-assisted Leaching
      • 6.6.5.2. Supercritical Fluid Extraction
      • 6.6.5.3. Bioleaching
      • 6.6.5.4. Electrochemical Recovery
      • 6.6.5.5. Membrane Separation
      • 6.6.5.6. Ionic Liquids
      • 6.6.5.7. Photocatalytic Recovery
    • 6.6.6. Sustainability of the hydrogen economy
  • 6.7. Markets
  • 6.8. Global market 2025-2046
    • 6.8.1. Ktonnes
    • 6.8.2. Revenues

7. COMPANY PROFILES(166 company profiles)

8. APPENDICES

  • 8.1. Research Methodology
  • 8.2. Glossary of Terms
  • 8.3. List of Abbreviations

9. REFERENCES

List of Tables

  • Table 1. List of Key Critical Raw Materials and Their Primary Applications
  • Table 2. Regulatory Landscape for Critical Raw Materials by Country/Region
  • Table 3. Key Market Drivers and Restraints in Critical Raw Materials Recovery
  • Table 4. Global Production of Critical Materials by Country (Top 10 Countries)
  • Table 5. Projected Demand for Critical Materials in Clean Energy Technologies (2024-2046)
  • Table 6. Value Proposition for Critical Material Extraction Technologies
  • Table 7. Critical Material Extraction Methods Evaluated by Key Performance Metrics
  • Table 8. Critical Rare-Earth Element Recovery Technologies from Secondary Sources
  • Table 9. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability
  • Table 10. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications
  • Table 11. Critical Semiconductor Material Recovery from Secondary Sources
  • Table 12. Critical Platinum Group Metal Recovery
  • Table 13. Price Trends for Key Recovered Materials (2020-2024)
  • Table 14. Global critical raw materials recovery market by material types (2025-2046), ktonnes
  • Table 15. Global Critical Raw Materials Recovery Market by Material Types (2025-2046), by Value (Billions USD)
  • Table 16. Global critical raw materials recovery market by recovery source (2025-2046), in ktonnes
  • Table 17. Global critical raw materials recovery market by region (2025-2046), by ktonnes
  • Table 18. Global Critical Raw Materials Recovery Market by Region (2025-2046), by Value (Billions USD)
  • Table 19. Primary global suppliers of critical raw materials
  • Table 20. Current contribution of recycling to meet global demand of CRMs
  • Table 21. Applications and Importance of Key Critical Raw Materials
  • Table 22. Comparison of Recovery Rates for Different Critical Materials
  • Table 23. Established and emerging secondary sources for critical material recovery
  • Table 24. Business models for critical material recovery from secondary sources
  • Table 25. Markets and applications: copper
  • Table 26. Technologies and Techniques for Copper Extraction and Recovery
  • Table 27. Markets and applications: nickel
  • Table 28. Technologies and Techniques for Nickel Extraction and Recovery
  • Table 29. Markets and applications: cobalt
  • Table 30. Technologies and Techniques for Cobalt Extraction and Recovery
  • Table 31. Markets and applications: rare earth elements
  • Table 32. Technologies and Techniques for Rare Earth Elements Extraction and Recovery
  • Table 33. Markets and applications: lithium
  • Table 34. Technologies and Techniques for Lithium Extraction and Recovery
  • Table 35. Markets and applications: gold
  • Table 36. Technologies and Techniques for Gold Extraction and Recovery
  • Table 37. Markets and applications: uranium
  • Table 38. Technologies and Techniques for Uranium Extraction and Recovery
  • Table 39. Markets and applications: zinc
  • Table 40. Zinc Extraction and Recovery Technologies
  • Table 41. Markets and applications: manganese
  • Table 42. Manganese Extraction and Recovery Technologies
  • Table 43. Markets and applications: tantalum
  • Table 44. Tantalum Extraction and Recovery Technologies
  • Table 45. Markets and applications: niobium
  • Table 46. Niobium Extraction and Recovery Technologies
  • Table 47. Markets and applications: indium
  • Table 48. Indium Extraction and Recovery Technologies
  • Table 49. Markets and applications: gallium
  • Table 50. Gallium Extraction and Recovery Technologies
  • Table 51. Markets and applications: germanium
  • Table 52. Germanium Extraction and Recovery Technologies
  • Table 53. Markets and applications: antimony
  • Table 54. Antimony Extraction and Recovery Technologies
  • Table 55. Markets and applications: scandium
  • Table 56. Scandium Extraction and Recovery Technologies
  • Table 57. Graphite Markets and Applications
  • Table 58. Graphite Extraction and Recovery Techniques and Technologies
  • Table 59. Comparison of Primary vs Secondary Production for Key Materials
  • Table 60. Environmental Impact Comparison: Primary vs Secondary Production
  • Table 61. Technologies for critical material recovery from secondary sources
  • Table 62. Technologies for critical raw material recovery from secondary sources
  • Table 63. Critical raw material extraction technologies
  • Table 64. Pyrometallurgical extraction methods
  • Table 65. Bioleaching processes and their applicability to critical materials
  • Table 66. Comparative analysis of metal recovery technologies
  • Table 67. Technology readiness of critical material recovery technologies by secondary material sources
  • Table 68. Technology readiness of critical semiconductor recovery technologies
  • Table 69. Critical Semiconductors Applications and Recycling Rates
  • Table 70. Types of critical raw Materials found in E-Waste
  • Table 71. E-waste Generation and Recycling Rates
  • Table 72. Critical Semiconductor Recovery from Photovoltaics
  • Table 73. Solar Panel Manufacturers and Their Recycling Capabilities
  • Table 74. Concentration and Value of Critical Raw Materials in E-waste
  • Table 75. Critical Semiconductor Materials and Their Applications
  • Table 76. Critical Materials Waste Recycling and Recovery Processes
  • Table 77. Collection and Sorting Infrastructure for Critical Materials Recycling
  • Table 78. Pre-Processing Technologies for Critical Materials Recycling
  • Table 79. Global recovered critical raw electronics material, 2025-2046 (ktonnes)
  • Table 80. Global recovered critical raw electronics material market, 2025-2046 (billions USD)
  • Table 81. Recovered critical raw electronics material market, by region, 2025-2046 (ktonnes)
  • Table 82. Drivers for Recycling Li-ion Batteries
  • Table 83. Li-ion Battery Metal Recovery Technologies
  • Table 84. Li-ion battery recycling value chain
  • Table 85. Typical lithium-ion battery recycling process flow
  • Table 86. Main feedstock streams that can be recycled for lithium-ion batteries
  • Table 87. Comparison of LIB recycling methods
  • Table 88. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries
  • Table 89. Economic assessment of battery recycling options
  • Table 90. Retired lithium-batteries
  • Table 91. Global capacities, current and planned (tonnes/year)
  • Table 92. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2025-2046
  • Table 93. Global Li-ion battery recycling market, 2025-2046 (ktonnes)
  • Table 94. Global Li-ion battery recycling market, 2025-2046 (billions USD)
  • Table 95. Li-ion battery recycling market, by region, 2025-2046 (ktonnes)
  • Table 96. Critical rare-earth elements markets and applications
  • Table 97. Primary and Secondary Material Streams for Rare-Earth Element Recovery
  • Table 98. Critical rare-earth element recovery technologies
  • Table 99. Rare Earth Element Content in Secondary Material Sources
  • Table 100. Comparison of Short-loop and Long-loop Rare Earth Recovery Methods
  • Table 101. Long-loop Rare-Earth Magnet Recycling Technologies
  • Table 102. Technologies for recycling rare earth magnets from waste
  • Table 103. Rare Earth Element Demand by Application
  • Table 104. Global rare-earth magnet key players in a table
  • Table 105. Rare Earth Magnet Recycling Value Chain
  • Table 106.Technology readiness of REE recovery technologies in a table
  • Table 107. Global recovered critical rare-earth element market, 2025-2046 (ktonnes)
  • Table 108. Global recovered critical rare-earth element market, 2025-2046 (billions USD)
  • Table 109. Global PGM Demand Segmented by Application
  • Table 110. Critical Platinum Group Metals: Applications and Recycling Rates
  • Table 111. Technology Readiness of Critical PGM Recovery from Secondary Sources
  • Table 112. Automotive Catalyst Recycling Players
  • Table 113. Challenges in transitioning to new PEMEL catalysts and the role of PGM recycling in a table
  • Table 114. Key Suppliers of Catalysts for Fuel Cells
  • Table 115. Global recovered critical platinum group metal market, 2025-2046 (ktonnes)
  • Table 116. Global recovered critical platinum group metal market, 2025-2046 (billions USD)
  • Table 117. Glossary of terms
  • Table 118. List of Abbreviations

List of Figures

  • Figure 1. TRL of critical material extraction technologies
  • Figure 2. Critical Raw Materials Value Chain
  • Figure 3. Global critical raw materials recovery market by material types (2025-2046), by ktonnes
  • Figure 4. Global Critical Raw Materials Recovery Market by Material Types (2025-2046), by Value (Billions USD)
  • Figure 5. Global critical raw materials recovery market by recovery source (2025-2046), by ktonnes
  • Figure 6. Global Critical Raw Materials Recovery Market by Recovery Source (2025-2046), by Value (Billions USD)
  • Figure 7. Global critical raw materials recovery market by region (2025-2046), by ktonnes
  • Figure 8. Global Critical Raw Materials Recovery Market by Region (2025-2046), by Value (Billions USD)
  • Figure 9. Conceptual diagram illustrating the Circular Economy
  • Figure 10. Circular Economy Model for Critical Materials
  • Figure 11. Copper demand outlook
  • Figure 12. Global nickel demand outlook
  • Figure 13. Global cobalt demand outlook
  • Figure 14. Global lithium demand outlook
  • Figure 15. Global graphite demand outlook
  • Figure 16. Solvent extraction (SX) in hydrometallurgy
  • Figure 17. SWOT analysis: hydrometallurgical extraction
  • Figure 18. SWOT analysis: pyrometallurgical extraction of critical materials
  • Figure 19. SWOT analysis: biometallurgy for critical material extraction
  • Figure 20. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction
  • Figure 21. SWOT analysis: electrochemical leaching for critical material extraction
  • Figure 22. SWOT analysis: supercritical fluid extraction technology
  • Figure 23. SWOT analysis: solvent extraction recovery technology
  • Figure 24. SWOT analysis: ion exchange resin recovery technology
  • Figure 25. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery
  • Figure 26. SWOT analysis: precipitation for critical material recovery
  • Figure 27. SWOT analysis: biosorption for critical material recovery
  • Figure 28. SWOT analysis: electrowinning for critical material recovery
  • Figure 29. SWOT analysis: direct critical material recovery technology
  • Figure 31. Global recovered critical raw electronics materials market, 2025-2046 (ktonnes)
  • Figure 32. Global recovered critical raw electronics material market, 2025-2046 (Billion USD)
  • Figure 33. Recovered critical raw electronics material market, by region, 2025-2046 (ktonnes)
  • Figure 34. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials
  • Figure 35. Mechanical separation flow diagram
  • Figure 36. Recupyl mechanical separation flow diagram
  • Figure 37. Flow chart of recycling processes of lithium-ion batteries (LIBs)
  • Figure 38. Hydrometallurgical recycling flow sheet
  • Figure 39. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling
  • Figure 40. Umicore recycling flow diagram
  • Figure 41. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling
  • Figure 42. Schematic of direct recyling process
  • Figure 43. SWOT analysis for Direct Li-ion Battery Recycling
  • Figure 44. Schematic diagram of a Li-metal battery
  • Figure 45. Schematic diagram of Lithium-sulfur battery
  • Figure 46. Schematic illustration of all-solid-state lithium battery
  • Figure 47. Global scrapped EV (BEV+PHEV) forecast to 2040
  • Figure 48. Global Li-ion battery recycling market, 2025-2046 (chemistry)
  • Figure 49. Global Li-ion battery recycling market, 2025-2046 (ktonnes)
  • Figure 50. Global Li-ion battery recycling market, 2025-2046 (Billion USD)
  • Figure 51. Global Li-ion battery recycling market, by region, 2025-2046 (ktonnes)
  • Figure 52. Global recovered critical rare-earth element market, 2025-2046 (ktonnes)
  • Figure 53. Global recovered critical rare-earth element market, 2025-2046 (Billion USD)
  • Figure 54. Global recovered critical platinum group metal market, 2025-2046 (ktonnes)
  • Figure 55. Global recovered critical platinum group metal market, 2025-2046 (Billion USD)