生物炭的全球市場2026-2036
市場調查報告書
商品編碼
1788491

生物炭的全球市場2026-2036

The Global Biochar Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 237 Pages, 87 Tables, 23 Figures | 訂單完成後即時交付

價格

全球生物炭市場正處於關鍵時刻,正從一種利基農業土壤改良劑轉型為全球最重要的碳去除技術之一。生物炭被政府間氣候變遷專門委員會 (IPCC) 認定為五大最有效的長期碳封存負排放解決方案之一,並已成為全球企業脫碳策略的基石。這種富碳材料透過在缺氧環境中對有機生物質進行受控熱解而生產,兼具持久性、可擴展性和成本效益的獨特優勢,從根本上改變了碳去除格局。

市場的快速發展反映了生物炭相較於其他碳去除技術的優勢。作為最具可擴展性和成本效益的碳去除方法之一,生物炭吸引了80%尋求持久碳封存解決方案的企業買家的注意。這種壓倒性的支持源自於生物炭卓越的持久性。如果生物炭能夠妥善應用於土壤或融入建築材料,它可以封存碳數百年甚至數千年,提供企業淨零策略所需的長期儲存能力。然而,這種日益增長的認知正在造成前所未有的供需失衡,從而從根本上改變市場動態。 2025年高品質生物炭產能中,62%已被重複購買者簽約,另有28%的產能預留至2026年。這種預先承諾的供應反映了成熟企業買家的策略轉變,他們更傾向於透過承購協議獲得長期優質的碳去除額度,而留給新進業者或尋求現貨市場購買者的可用額度卻微乎其微。

這種供應限制導致價格大幅上漲,光是2024年一年生物炭價格就上漲了18%。價格上漲不僅反映了供需基本面,也反映了市場對生物炭優於傳統碳補償產品及其持久性的認可。儘管價格不斷上漲,但那些有遠見、簽訂多年期承購協議的公司正在獲得顯著的成本優勢——與現貨市場採購相比,成本節省高達31%。這些節省凸顯了長期合約在供應受限市場中的戰略價值,同時也為生物炭製造商提供了必要的收入保障,以資助其產能擴張。

市場前景凸顯了巨大的規模化挑戰,這些挑戰將決定未來十年該產業的發展軌跡。預計到2030年,企業對持久碳去除的需求將達到每年40-200公噸二氧化碳當量(MtCO2e),這意味著潛在的成長將是目前市場規模的25倍。這種爆炸性需求成長的驅動因素包括:科學碳目標倡議(SBTi)的日益成熟、碳去除監管要求的日益嚴格,以及企業日益認識到傳統的碳抵消方法缺乏可靠的淨零策略所需的持久性和額外性。然而,目前的供應量遠低於這些預測,導致產業分析師將企業買家描述為 "生物炭淘金熱" 。開發新產能所需的時間、對永續原料採購的需求以及生產符合嚴格碳去除標準的高品質生物炭的技術複雜性,進一步加劇了供需失衡。

這些市場動態使生物炭成為氣候融資更廣泛轉型的核心,永久性碳去除正成為一個獨特的資產類別,並擁有高昂的價格。對於製造商而言,這代表著一個前所未有的成長機遇,並由長期合約收入來源提供支援。對於買家而言,挑戰在於隨著市場快速擴張和成熟,如何以可控的成本確保充足的供應。

本報告研究了全球生物炭市場,提供了市場規模和成長預測、生產技術和創新以及144家公司概況的資訊。

目錄

第1章 簡介

  • 所謂生物炭
  • 碳隔離
  • 生物炭的特性
  • 生物炭 vs. 木炭 vs. 活性碳
  • 市場與用途
  • 全球生物炭市場(2018年~2036年)
  • 市場預測(2026年~2036年)

第2章 生物炭的生產

  • 原料
  • 生產流程
  • 生物炭的價格設定
  • 生物炭排碳權
  • 品質保證與認證標準
  • 法規和政策

第3章 生物炭的市場

  • 生物炭市場驅動因素
  • SWOT 分析
  • 應用
  • 農業與畜牧業
  • 建築材料
  • 廢水處理
  • 空氣與天然氣過濾
  • 碳捕獲與封存
  • 化妝品與個人護理
  • 紡織品
  • 積層製造與3D列印
  • 油墨與印刷
  • 聚合物與複合材料
  • 包裝
  • 鋼鐵與金屬
  • 能源與發電

第4章 全球生物炭生產

  • 各市場
  • 供應鏈的分析與物流
  • 各地區
  • 各原料

第5章 碳消除市場整合

  • 碳去除信用額度市場分析
  • 企業籌資策略
  • 檢驗和監測的技術
  • 氣候財政的整合

第6章 生物炭的技術創新

  • 新生產技術
  • 尖端材料開發
  • 數位技術的整合
  • 永續性和生命週期評估

第7章 法規形勢與政策趨勢

  • 全球法規結構性演進
  • 地區的政策
  • 碳市場法規

第8章 企業簡介(企業144公司的簡介)

第9章 調查手法

第10章 參考文獻

The global biochar market stands at a pivotal moment, transforming from a niche agricultural amendment into one of the world's most critical carbon removal technologies. Recognized by the Intergovernmental Panel on Climate Change (IPCC) as one of the five most effective negative-emission solutions for long-term carbon sequestration, biochar has emerged as the cornerstone of corporate decarbonization strategies worldwide. This carbon-rich material, produced through the controlled thermal decomposition of organic biomass in oxygen-limited environments, offers a unique combination of permanence, scalability, and cost-effectiveness that has fundamentally reshaped the carbon removal landscape.

The market's rapid evolution reflects biochar's superior attributes compared to other carbon removal technologies. As one of the most scalable and cost-effective engineered carbon removal methods available, biochar has captured the attention of 80% of corporate buyers seeking durable carbon sequestration solutions. This overwhelming preference stems from biochar's exceptional permanence characteristics - the material can sequester carbon for hundreds to thousands of years when properly applied to soils or integrated into construction materials, providing the long-term storage capabilities that corporate net-zero strategies demand. However, this surge in recognition has created an unprecedented supply-demand imbalance that is fundamentally altering market dynamics. The statistics paint a stark picture of market tightness: 62% of high-quality biochar capacity for 2025 is already locked into contracts by repeat buyers, with an additional 28% secured through 2026. This pre-commitment of supply reflects the strategic shift by sophisticated corporate buyers toward securing long-term access to premium carbon removal credits through offtake agreements, leaving minimal availability for new market entrants or companies pursuing spot market purchases.

The supply constraints have manifested in significant price appreciation, with biochar prices rising 18% in 2024 alone. This price momentum reflects not just supply-demand fundamentals but also the market's recognition of biochar's superior quality and permanence compared to traditional carbon offsets. Despite these price increases, companies demonstrating foresight by signing multi-year offtake agreements are achieving substantial cost advantages, saving up to 31% compared to spot market purchases. These savings underscore the strategic value of long-term contracting in a supply-constrained market while providing biochar producers with the revenue certainty needed to finance capacity expansion.

The market outlook reveals a dramatic scaling challenge that will define the industry's trajectory over the next decade. Corporate demand for durable carbon removal is projected to reach 40-200 metric tons of carbon dioxide equivalent (MtCO2e) per year by 2030, representing potential growth of 25 times current market size. This explosive demand growth is driven by the maturation of Science-Based Targets initiatives, increasing regulatory requirements for carbon removal, and growing corporate recognition that traditional offset approaches lack the permanence and additionality required for credible net-zero strategies. Yet current supply falls far short of these projections, creating what industry analysts describe as a "biochar gold rush" among corporate buyers. The supply-demand imbalance is exacerbated by the time required to develop new production capacity, the need for sustainable feedstock sourcing, and the technical complexity of producing high-quality biochar that meets stringent carbon removal standards.

This market dynamic positions biochar at the center of a broader transformation in climate finance, where permanent carbon removal is becoming a distinct asset class commanding premium pricing. For producers, the opportunity represents unprecedented growth potential supported by long-term contracted revenue streams. For buyers, the challenge is securing adequate supply at manageable costs while the market undergoes rapid expansion and maturation.

"The Global Biochar Market 2026-2036" provides unprecedented insight into the global biochar market's trajectory through 2036, delivering essential strategic intelligence for investors, producers, technology developers, and corporate buyers navigating this rapidly expanding market.

Contents include:

  • Market Analysis & Forecasts (2026-2036)
    • Global market size evolution with detailed regional breakdowns and growth projections
    • Application segment forecasts across 16 major market categories including agriculture, construction, energy, and industrial applications
    • Historical price analysis (2020-2025) with forward-looking price forecasts by application and quality grades
    • Supply-demand balance analysis identifying production capacity constraints and investment requirements
    • Competitive landscape evolution with technology readiness assessments and market consolidation trends
  • Production Technologies & Innovation
    • Comprehensive analysis of pyrolysis, gasification, hydrothermal carbonization, and torrefaction processes
    • Advanced processing technologies including microwave-assisted, solar thermal, and plasma-enhanced production
    • Equipment manufacturer profiles with technology comparison matrices
    • Emerging production innovations and continuous processing developments
    • Digital technology integration including AI, machine learning, and predictive maintenance systems
  • Carbon Removal Market Integration
    • Carbon removal credit market analysis with pricing dynamics and premium drivers
    • Corporate procurement strategies and offtake agreement structures
    • Verification and monitoring technologies including remote sensing, IoT, and blockchain applications
    • Integration with climate finance including green bonds and blended finance mechanisms
    • Quality assurance and certification standards evolution across major markets
  • Application Markets
    • Agriculture & livestock applications including precision agriculture integration and livestock feed additives
    • Construction materials with advanced building composites and green building certification integration
    • Steel and metallurgical applications featuring blast furnace and electric arc furnace integration strategies
    • Energy applications covering fuel cells, battery electrodes, supercapacitors, and grid-scale storage
    • Water treatment, air filtration, and specialized industrial applications with market size and growth projections
  • Regional Markets Analysis
    • Supply Chain & Logistics Analysis
    • Feedstock supply chain optimization strategies and sustainable sourcing approaches
    • Production facility location analysis and transportation network development
    • Global production capacity by region with feedstock utilization patterns
    • Investment requirements and capacity expansion planning across major producing regions
  • Company Profiles: 144 companies driving biochar market development globally, including established producers, emerging technology innovators, and integrated carbon removal specialists, including A Healthier Earth, Airex Energy, Alcom Carbon Markets Philippines, Amata Green SL, American BioCarbon, Aperam BioEnergia, Applied Carbon, AquaGreen Holding ApS, ArborX, BC Biocarbon, Bella Biochar Corporation, Bio365, Biomacon GmbH, Bio C&C, Biochar GmbH & Co. KG, Biochar Latium, Biochar Now, Biochar Supreme, Bioenergie Frauenfeld, Bioforcetech, Bio-Logical Carbon Ltd., Biomass Energy Techniques Inc., Biomassehof Allgau eG, Bionika AG, bionero GmbH, Biosorra, BluSky Carbon Inc., British Columbia Biocarbon Ltd., Capchar Ltd., Carba, Carbofex Oy, Carboforce GmbH, Carboganic, CarboVerte GmbH, Carbo Culture, Carbon Balance Finland Oy, Carbonaires Limited, Carbonloop, CarbonStar Systems, CarbonZero, CarbonZero.Eco, Carbuna AG, Carbon Cycle GmbH, Carbonauten, CarbonCentric, Carbonis GmbH & Co. KG, Carbons Finland Oy, CarStorCan, Cemex, CharGrow, Charline GmbH, Char Technologies, Charm Industrial, CNF Biofuel AS, Christoph Fischer GmbH, Circle Soil, Circular Carbon, Clean Maine Carbon, Cool Planet Energy Systems, Corigin Solutions Inc., DarkBlack Carbon, DEMIO, Dutch Carboneers, Earthly Biochar, EcoCera, EcoLocked GmbH, EGoS, Energy Ocean GmbH, EnergieWerk Ilg GmbH, Envigas AB, Exomad Green, Explocom GK SRL, Freres Biochar, Frichs Pyrolysis ApS, General Biochar Systems, Glanris, Grassroots Biochar AB, Green Man Char, Grossenbacher Grungut, Groupe Bordet, H2 bois SA, Hago Energetics, Hempalta Corp, HSY, Humica, Husk Ventures S.L., HyveGeo, Inega AG, InRim Pty Ltd., International BioRefineries LLC, Kiland Limited, Liferaft Carbon Capture, LignoCarbon Schweiz AG, Lucrat GmbH, Made Of Air GmbH, Mercurius Biorefining, Myno Carbon, NAWARO ENERGIE Betrieb, Neutera, NetZero, Nevel AB, Nordgau Carbon, Nova Pangaea Technologies, NovoCarbo GmbH, Onnu, Oplandske Bioenergi AS, Oregon Biochar Solutions, Pacific Biochar, Perpetual Next, Phoenix Energy, ProE Bioenergie GmbH, Pure Life Carbon Inc., Pyrocal Pty Ltd., Pyrochar, Pyreg GmbH, Qualterra, Rainbow Bee Eater, Recap Carbon, Reclimate and more......

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. What is biochar?
  • 1.2. Carbon sequestration
    • 1.2.1. Carbon Removal Market Integration
      • 1.2.1.1. Carbon Removal Credits (CRC) vs traditional carbon offsets
      • 1.2.1.2. Biochar's role in corporate net-zero strategies
        • 1.2.1.2.1. Multi-year offtake agreements affecting supply
      • 1.2.1.3. Market dynamics and pricing evolution
  • 1.3. Properties of biochar
  • 1.4. Biochar vs charcoal vs activated carbon
  • 1.5. Markets and applications
  • 1.6. Global market for biochar 2018-2036
  • 1.7. Market forecasts 2026-2036
    • 1.7.1. Market Size and Growth Projections
      • 1.7.1.1. Global market size evolution
      • 1.7.1.2. Regional growth drivers and constraints
      • 1.7.1.3. Application segment forecasts
    • 1.7.2. Price Evolution and Market Dynamics
      • 1.7.2.1. Historical price analysis 2020-2025
      • 1.7.2.2. Price forecasts by application and quality
      • 1.7.2.3. Market maturation impact on pricing
    • 1.7.3. Supply-Demand Balance Analysis
      • 1.7.3.1. Production capacity vs demand projections
      • 1.7.3.2. Supply constraints and bottlenecks
      • 1.7.3.3. Investment requirements for market growth

2. BIOCHAR PRODUCTION

  • 2.1. Feedstocks
  • 2.2. Production processes
    • 2.2.1. Sustainable production
    • 2.2.2. Pyrolysis
      • 2.2.2.1. Slow pyrolysis
      • 2.2.2.2. Fast pyrolysis
    • 2.2.3. Gasification
    • 2.2.4. Hydrothermal carbonization (HTC)
    • 2.2.5. Torrefaction
    • 2.2.6. Advanced Processing Technologies
      • 2.2.6.1. Microwave-assisted pyrolysis
      • 2.2.6.2. Solar thermal processing
      • 2.2.6.3. Plasma-enhanced production
    • 2.2.7. Comparison of production processes
    • 2.2.8. Equipment manufacturers
  • 2.3. Biochar pricing
  • 2.4. Biochar carbon credits
    • 2.4.1. Overview
    • 2.4.2. Removal and reduction credits
    • 2.4.3. The advantage of biochar
    • 2.4.4. Prices
    • 2.4.5. Buyers of biochar credits
    • 2.4.6. Competitive materials and technologies
      • 2.4.6.1. Geologic carbon sequestration
      • 2.4.6.2. Bioenergy with Carbon Capture and Storage (BECCS)
      • 2.4.6.3. Direct Air Carbon Capture and Storage (DACCS)
      • 2.4.6.4. Enhanced mineral weathering with mineral carbonation
      • 2.4.6.5. Ocean alkalinity enhancement
      • 2.4.6.6. Forest preservation and afforestation
  • 2.5. Quality Assurance and Certification Standards
    • 2.5.1. Puro.Earth methodology developments
    • 2.5.2. European Carbon Removal Certification Framework (CRCF)
    • 2.5.3. Regional certification schemes and harmonization
  • 2.6. Regulations and policy

3. MARKETS FOR BIOCHAR

  • 3.1. Market drivers for biochar
  • 3.2. SWOT analysis
  • 3.3. Applications
  • 3.4. Agriculture & livestock farming
    • 3.4.1. Market drivers and trends
    • 3.4.2. Applications
      • 3.4.2.1. Soil amendment
      • 3.4.2.2. Fertilizer additives
      • 3.4.2.3. Livestock applications
        • 3.4.2.3.1. Feed additives
        • 3.4.2.3.2. Digestive health and microbiome enhancement
        • 3.4.2.3.3. Toxin binding and feed safety
      • 3.4.2.4. Precision agriculture integration
        • 3.4.2.4.1. IoT-enabled biochar applications
        • 3.4.2.4.2. Variable rate application technologies
      • 3.4.2.5. Poultry and aquaculture applications
        • 3.4.2.5.1. Litter management systems
        • 3.4.2.5.2. Water quality improvement in aquaculture
  • 3.5. Construction materials
    • 3.5.1. Market drivers and trends
    • 3.5.2. Applications
      • 3.5.2.1. Concrete additives and carbon storage
      • 3.5.2.2. Asphalt and road construction
      • 3.5.2.3. Acoustic insulation
      • 3.5.2.4. Advanced building composites
        • 3.5.2.4.1. Biochar-polymer building materials
        • 3.5.2.4.2. Fire-resistant and safety applications
      • 3.5.2.5. Green building certification integration
        • 3.5.2.5.1. LEED and BREEAM Recognition
        • 3.5.2.5.2. Carbon-Negative Building Materials
        • 3.5.2.5.3. Embodied Carbon Reduction Strategies
  • 3.6. Wastewater treatment
    • 3.6.1. Market drivers and trends
    • 3.6.2. Applications
    • 3.6.3. Advanced treatment technologies
      • 3.6.3.1. Nutrient recovery systems
      • 3.6.3.2. Micropollutant removal
      • 3.6.3.3. Integrated treatment solutions
  • 3.7. Air and Gas Filtration
    • 3.7.1. Market drivers and trends
    • 3.7.2. Applications
    • 3.7.3. Specialized gas treatment
      • 3.7.3.1. Biogas upgrading applications
      • 3.7.3.2. Industrial emission control
      • 3.7.3.3. Indoor air quality systems
  • 3.8. Carbon capture and storage
    • 3.8.1. Market drivers and trends
    • 3.8.2. Direct air capture integration
    • 3.8.3. Point-source capture applications
      • 3.8.3.1. Industrial flue gas treatment
      • 3.8.3.2. Cement and steel industry integration
  • 3.9. Cosmetics and personal care
    • 3.9.1. Market drivers and trends
    • 3.9.2. Applications
  • 3.10. Textiles
    • 3.10.1. Market drivers and trends
    • 3.10.2. Applications
      • 3.10.2.1. Functional textiles
        • 3.10.2.1.1. Antimicrobial and odour control textiles
        • 3.10.2.1.2. Smart textile integration
  • 3.11. Additive manufacturing and 3D printing
    • 3.11.1. Market drivers and trends
    • 3.11.2. Applications
      • 3.11.2.1. Metal 3D printing
      • 3.11.2.2. Biomedical device manufacturing
  • 3.12. Ink and printing
    • 3.12.1. Market drivers and trends
    • 3.12.2. Applications
  • 3.13. Polymers and composites
    • 3.13.1. Market drivers and trends
    • 3.13.2. Applications
      • 3.13.2.1. Biochar-polymer composites
      • 3.13.2.2. Synthetic resins and adhesives
      • 3.13.2.3. Rubber composites and tires
      • 3.13.2.4. High-performance composites
        • 3.13.2.4.1. Automotive Lightweighting
        • 3.13.2.4.2. Aerospace Applications
        • 3.13.2.4.3. Marine and Offshore Composites
  • 3.14. Packaging
    • 3.14.1. Market drivers and trends
    • 3.14.2. Applications
  • 3.15. Steel and metal
    • 3.15.1. Market drivers and trends
    • 3.15.2. Applications
      • 3.15.2.1. Blast furnace integration strategies
        • 3.15.2.1.1. Co-firing optimization
        • 3.15.2.1.2. Carbon injection technologies
      • 3.15.2.2. Electric arc furnace applications
        • 3.15.2.2.1. Carbon addition optimization
        • 3.15.2.2.2. Energy efficiency improvements
      • 3.15.2.3. Non-ferrous metal applications
  • 3.16. Energy and power generation
    • 3.16.1. Market drivers and trends
    • 3.16.2. Applications
      • 3.16.2.1. Fuel cells and hydrogen systems
      • 3.16.2.2. Supercapacitors
      • 3.16.2.3. Battery electrodes and materials
      • 3.16.2.4. Gas storage and separation
      • 3.16.2.5. Biocoal and co-firing
      • 3.16.2.6. Biogas upgrading and enhancement
      • 3.16.2.7. Photovoltaics

4. GLOBAL PRODUCTION OF BIOCHAR

  • 4.1. By market
  • 4.2. Supply Chain Analysis and Logistics
    • 4.2.1. Feedstock supply chain optimization
    • 4.2.2. Production facility location strategies
    • 4.2.3. Transportation and distribution networks
  • 4.3. By region
  • 4.4. By feedstocks
    • 4.4.1. China and Asia-Pacific
    • 4.4.2. North America
    • 4.4.3. Europe
    • 4.4.4. South America
    • 4.4.5. Africa
    • 4.4.6. Middle East

5. CARBON REMOVAL MARKET INTEGRATION

  • 5.1. Carbon Removal Credit Market Analysis
    • 5.1.1. Market size and growth projections
    • 5.1.2. Biochar market share in CDR sector
    • 5.1.3. Pricing dynamics and premium drivers
  • 5.2. Corporate Procurement Strategies
    • 5.2.1. Offtake agreement structures and terms
    • 5.2.2. Portfolio diversification approaches
    • 5.2.3. Risk management in carbon procurement
  • 5.3. Verification and Monitoring Technologies
    • 5.3.1. Remote sensing and IoT integration
    • 5.3.2. Blockchain applications for traceability
    • 5.3.3. Third-party verification evolution
  • 5.4. Integration with Climate Finance
    • 5.4.1. Green bond market integration
    • 5.4.2. Blended finance mechanisms
    • 5.4.3. Development finance institution involvement

6. TECHNOLOGY INNOVATION IN BIOCHAR

  • 6.1. Emerging Production Technologies
    • 6.1.1. Next-generation pyrolysis systems
    • 6.1.2. Continuous processing innovations
    • 6.1.3. Energy integration optimization
  • 6.2. Advanced Material Development
    • 6.2.1. Engineered biochar properties
    • 6.2.2. Composite material innovations
    • 6.2.3. Functionalization technologies
  • 6.3. Digital Technology Integration
    • 6.3.1. AI and machine learning applications
    • 6.3.2. Process optimization algorithms
    • 6.3.3. Predictive maintenance systems
  • 6.4. Sustainability and Lifecycle Assessment
    • 6.4.1. Comprehensive LCA methodologies
    • 6.4.2. Circular economy integration
    • 6.4.3. Sustainability metrics and reporting

7. REGULATORY LANDSCAPE AND POLICY DEVELOPMENTS

  • 7.1. Global Regulatory Framework Evolution
    • 7.1.1. International standards harmonization
    • 7.1.2. Trade and certification requirements
    • 7.1.3. Cross-border carbon market integration
  • 7.2. Regional Policy
    • 7.2.1. North America
    • 7.2.2. Europe
    • 7.2.3. Asia-Pacific
  • 7.3. Carbon Market Regulations

8. COMPANY PROFILES (144 company profiles)

9. RESEARCH METHODOLOGY

10. REFERENCES

List of Tables

  • Table 1. Carbon Removal Credits vs Traditional Offsets Comparison
  • Table 2. Corporation Activities in Biochar
  • Table 3. Biochar Multi-year Offtake Agreement Examples
  • Table 4. Carbon Removal Market Pricing Evolution
  • Table 5. Summary of key properties of biochar
  • Table 6. Biochar physicochemical and morphological properties
  • Table 7. Biochar vs charcoal vs activated carbon
  • Table 8. Markets and applications for biochar
  • Table 9. Global demand for biochar 2018-2036 (1,000 tons)
  • Table 10. Global Biochar Market Revenues 2018-2036 (USD Million)
  • Table 11. Regional Growth Drivers and Constraints Analysis
  • Table 12. Biochar application segment forecasts
  • Table 13. Historical Biochar Price Analysis 2020-2025 (USD/Ton)
  • Table 14. Biochar Price forecasts by application and quality (USD/Ton)
  • Table 15. Production capacity vs demand projections
  • Table 16. Supply Constraints and Bottlenecks
  • Table 17. Biochar feedstocks-source, carbon content, and characteristics
  • Table 18. Biochar production technologies, description, advantages and disadvantages
  • Table 19. Comparison of slow and fast pyrolysis for biomass
  • Table 20. Comparison of thermochemical processes for biochar production
  • Table 21. Comparison of Biochar Production Processes
  • Table 22. Biochar production equipment manufacturers
  • Table 23. Competitive materials and technologies that can also earn carbon credits
  • Table 24. Biochar Quality Assurance and Certification Standards
  • Table 25. Regional Certification Schemes and Harmonization Framework
  • Table 26. Current regulations related to biochar
  • Table 27. Market drivers for biochar
  • Table 28. Main biochar applications
  • Table 29. Biochar applications in agriculture and livestock farming
  • Table 30. Effect of biochar on different soil properties
  • Table 31. Fertilizer products and their associated N, P, and K content
  • Table 32. IoT-enabled Biochar Applications
  • Table 33. Application of biochar in construction
  • Table 34. Process and benefits of biochar as an amendment in cement
  • Table 35. Application of biochar in asphalt
  • Table 36. Biochar applications for wastewater treatment
  • Table 37. Nutrient Recovery Systems
  • Table 38. Micropollutant Removal
  • Table 39. Integrated Treatment Solutions
  • Table 40. Biogas Upgrading Applications
  • Table 41. Indoor Air Quality Systems
  • Table 42. Biochar in carbon capture overview
  • Table 43. Point-Source Capture Applications
  • Table 44. Biochar in cosmetic products
  • Table 45. Biochar in textiles
  • Table 46. Biochar in additive manufacturing
  • Table 47. Biochar in ink
  • Table 48. Biochar in packaging
  • Table 49. Companies using biochar in packaging
  • Table 50. Biochar in steel and metal
  • Table 51. Carbon Injection Technologies
  • Table 52. Summary of applications of biochar in energy
  • Table 53. Global Biochar Market Revenues 2018-2036 (USD Million)
  • Table 54. Transportation and Distribution Networks
  • Table 55. Global demand for biochar 2018-2036 (1,000 tons), by region
  • Table 56. Biochar production by feedstocks in China (1,000 tons), 2023-2036
  • Table 57. Biochar production by feedstocks in Asia-Pacific (1,000 tons), 2023-2036
  • Table 58. Biochar production by feedstocks in North America (1,000 tons), 2023-2036
  • Table 59. Biochar production by feedstocks in Europe (1,000 tons), 2023-2036
  • Table 60. Biochar production by feedstocks in South America (1,000 tons), 2023-2036
  • Table 61. Biochar production by feedstocks in Africa (1,000 tons), 2023-2036
  • Table 62. Biochar production by feedstocks in the Middle East (tons), 2023-2036
  • Table 63. Carbon Removal Market Size and Growth Projections (2023-2036)
  • Table 64. Biochar Market Share in CDR Sector by Technology (2024-2036)
  • Table 65. Biochar Carbon Credit Pricing Dynamics (2023-2036)
  • Table 66. Corporate Biochar Offtake Agreements
  • Table 67. Remote Sensing and IoT Integration in Biochar Verification
  • Table 68. Blockchain applications for traceability
  • Table 69. Development Finance Institution Biochar Involvement
  • Table 70. Next-Generation Pyrolysis Systems Comparison
  • Table 71. Next Continuous Processing Innovation Features
  • Table 72. Next Energy Integration Optimization Technologies
  • Table 73. Next Engineered Biochar Properties and Applications
  • Table 74. Next Biochar Composite Material Applications
  • Table 75. Next Biochar Functionalization Technologies
  • Table 76. AI and Machine Learning Applications in Biochar Production
  • Table 77. Process Optimization Algorithms and Applications
  • Table 78. Predictive Maintenance Technologies and Benefits
  • Table 79. LCA methodologies
  • Table 80. Circular Economy Integration Opportunities
  • Table 81. Sustainability Metrics and Reporting Framework
  • Table 82. International Standards Harmonization Framework
  • Table 83. Trade and Certification Requirements by Region
  • Table 84. Cross-Border Carbon Market Integration Mechanisms
  • Table 85. North American Regional Biochar Policies
  • Table 86. European Regional Biochar Policies
  • Table 87. Asia-Pacific Regional Biochar Policies

List of Figures

  • Figure 1. Biochars from different sources, and by pyrolyzation at different temperatures
  • Figure 2. Compressed biochar
  • Figure 3. Global demand for biochar 2018-2036 (1,000 tons)
  • Figure 4. Global Biochar Market Revenues 2018-2036 (USD Million)
  • Figure 5. Schematic of biochar production
  • Figure 6. Biochar production diagram
  • Figure 7. Pyrolysis process and by-products in agriculture
  • Figure 8. SWOT analysis for biochar market
  • Figure 9. Perennial ryegrass plants grown in clay soil with (Right) and without (Left) biochar
  • Figure 10. Biochar bricks
  • Figure 11. Global Biochar Market Revenues 2018-2036 (USD Million)
  • Figure 12. Global demand for biochar 2018-2036 (1,000 tons), by region
  • Figure 13. Biochar production by feedstocks in China (1,000 tons), 2023-2036
  • Figure 14. Biochar production by feedstocks in Asia-Pacific (1,000 tons), 2023-2036
  • Figure 15. Biochar production by feedstocks in North America (1,000 tons), 2023-2036
  • Figure 16. Biochar production by feedstocks in Europe (1,000 tons), 2023-2036
  • Figure 17. Biochar production by feedstocks in South America (1,000 tons), 2023-2036
  • Figure 18. Biochar production by feedstocks in Africa (1,000 tons), 2023-2036
  • Figure 19. Biochar production by feedstocks in the Middle East (tons), 2023-2036
  • Figure 20. Capchar prototype pyrolysis kiln
  • Figure 21. Made of Air's HexChar panels
  • Figure 22. Takavator