先進半導體包裝溫度控管系統·材料的全球市場(2026年~2036年)
市場調查報告書
商品編碼
1761742

先進半導體包裝溫度控管系統·材料的全球市場(2026年~2036年)

The Global Market for Thermal Management Systems and Materials for Advanced Semiconductor Packaging 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 165 Pages, 71 Tables, 16 Figures | 訂單完成後即時交付

價格

全球先進半導體封裝熱管理系統及材料市場是更廣泛的半導體生態系統中成長最快的領域之一,這得益於功率密度的持續成長以及從傳統二維封裝到創新型2.5D/3D整合架構的轉變。該市場涵蓋熱界面材料、液冷系統、先進散熱器,以及石墨烯基解決方案和微流體冷卻等新技術,這些技術能夠實現下一代運算性能。

市場規模預測顯示,到2036年,市場規模將呈現爆炸性成長,這反映了日益增長的熱管理需求以及高端熱解決方案的採用,而這些解決方案的價格可能遠高於傳統方法。從傳統熱管理向先進解決方案的轉變將創造市場變革,由於技術日益複雜化和性能高端化,銷售成長將顯著超過銷售成長。

熱界面材料已成為最大的細分市場,其發展方向已從傳統的導熱矽脂演變為液態金屬、石墨烯複合材料和鑽石增強解決方案等先進材料,這些材料可將熱導率比傳統材料提高10到100倍。由於在高效能運算和人工智慧應用中,熱設計功率不斷增長,超過了風冷能力,液冷技術成為成長最快的細分市場。直接晶片冷卻保持市場領先地位,而浸沒式冷卻和微流體冷卻則是新的機會。

資料中心和高效能運算是主要市場。汽車電子是成長最快的細分市場,電動車的熱管理需求推動了先進冷卻技術的採用,而消費性電子產品則透過小型化和性能增強趨勢保持穩定成長。熱管理市場技術的演變呈現出明顯的進步趨勢,從傳統材料的漸進式改進到微流體、先進材料和整合冷卻解決方案等創新方法。此次技術轉型為成熟的熱管理公司和開發突破性技術的創新新創公司創造了市場機遇,隨著技術的成熟和製造規模的擴大,預計將推動市場整合。

2036 年市場展望表明,人工智慧加速發展、3D 封裝的普及以及汽車電氣化等基本行業趨勢將對卓越的熱管理能力產生無限需求,從而推動持續強勁增長。

本報告研究了全球先進半導體封裝熱管理系統和材料市場,並提供了有關熱管理技術發展、市場規模及 2036 年預測、競爭格局以及對參與者的策略建議的資訊。

目錄

第1章 摘要整理

  • 先進半導體封裝 - 從 2D 架構到先進的 2.5D/3D 整合技術
  • 挑戰
  • TSV 效能
  • 水平到垂直功率傳輸的轉變
  • TIM1 應用的導熱介面材料選擇
  • 高效能運算 (HPC) 的冷卻技術

第2章 簡介

  • 熱設計功耗 (TDP)
  • 適用於 HPC 晶片的先進半導體封裝技術
  • 適用於 GPU 的 2.5D/3D 封裝
  • GPU 平面晶片封裝領域的發展
  • 高功率先進封裝的熱管理

第3章 2.5D/3D先進半導體封裝技術

  • 簡介
  • 最新半導體封裝技術
  • 先進半導體封裝技術的最佳化
  • 互連技術
  • 2.5D 封裝
  • 凸塊技術
  • 製造良率
  • 成本分析
  • 基板技術演進(矽、有機和玻璃)
  • 先進封裝的組裝與偵測挑戰

第4章 電力管理

  • 簡介
  • 供電系統
  • 高效能運算 (HPC) 晶片生態系統
  • 先進供電網路 (PDN)
  • 電源噪聲
  • 動態電壓和頻率調節 (DVFS)
  • 電源門控
  • 時鐘門控
  • 中介層整合式電壓調節器(IVR)
  • 開關電容電壓轉換器
  • 封裝基板磁性集成
  • AI 動態電源管理
  • 熱管理運行循環
  • 封裝內電壓調節 (OPVR)
  • 去耦電容 (Decap)
  • 低電阻互連
  • 挑戰

第5章 適合先進包裝的新的熱材料與解決方案

  • 簡介
  • 粘晶技術
  • 3D半導體包裝的TIM1
  • 新的熱技術
  • 熱建模,模擬

第6章 液體冷卻

  • 概要
  • 液體冷卻技術
  • 機櫃層級電力限制
  • 晶片層級冷卻方法
  • 先進的冷卻整合
  • 冷卻技術的比較

第7章 全球市場的預測

  • 類別
  • 各區域
  • 各收益
  • 包裝類別
  • 液體冷卻市場預測
  • 先進熱材料市場演進
  • 地理市場分佈

第8章 企業簡介(企業48家企業簡介)

第9章 參考文獻

The global market for thermal management systems and materials in advanced semiconductor packaging represents one of the fastest-growing segments within the broader semiconductor ecosystem, driven by the relentless increase in power densities and the industry's transition from traditional 2D packaging toward revolutionary 2.5D and 3D integration architectures. This market encompasses thermal interface materials, liquid cooling systems, advanced heat spreaders, and emerging technologies including graphene-based solutions and microfluidic cooling that enable next-generation computing performance.

Market size projections indicate explosive growth to 2036, reflecting both increasing thermal management requirements and the adoption of premium thermal solutions that command substantially higher pricing than traditional approaches. The transition from conventional thermal management toward advanced solutions creates a market evolution where value growth significantly exceeds volume growth due to technology sophistication and performance premiums.

Thermal interface materials represent the largest market segment, evolving from traditional thermal greases toward advanced materials including liquid metals, graphene composites, and diamond-enhanced solutions that can achieve thermal conductivity improvements of 10-100x compared to conventional materials. Liquid cooling technologies represent the fastest-growing market segment, driven by thermal design power increases that exceed air cooling capabilities in high-performance computing and AI applications. Direct-to-chip cooling maintains market leadership, while immersion cooling and microfluidic cooling represent emerging opportunities.

Data centers and high-performance computing are primary markets. Automotive electronics is a fast growing segment as electric vehicle thermal management requirements drive adoption of advanced cooling technologies, while consumer electronics maintains steady growth through miniaturization and performance enhancement trends. Technology evolution within the thermal management market demonstrates clear progression from evolutionary improvements in traditional materials toward revolutionary approaches including microfluidics, advanced materials, and integrated cooling solutions. This technology transition creates market opportunities for both established thermal management companies and innovative startups developing breakthrough technologies, with market consolidation expected as technologies mature and manufacturing scales increase.

The market outlook through 2036 indicates continued robust growth driven by fundamental industry trends including AI acceleration, 3D packaging adoption, and automotive electrification that create insatiable demand for superior thermal management capabilities.

"The Global Market for Thermal Management Systems and Materials for Advanced Semiconductor Packaging 2026-2036" provides essential analysis of thermal interface materials (TIMs), liquid cooling systems, advanced heat management solutions, and emerging technologies that enable next-generation high-performance computing, artificial intelligence, and automotive electronics applications.

As semiconductor packages evolve toward higher power densities exceeding 1000W and package sizes approaching 100mm edge dimensions, conventional thermal management approaches become inadequate, creating substantial market opportunities for advanced thermal solutions including graphene-based materials, liquid metal interfaces, microfluidic cooling systems, and revolutionary cooling architectures. The market encompasses both evolutionary improvements to existing thermal management technologies and disruptive innovations including carbon nanotube thermal interfaces, metamaterial heat spreaders, and AI-driven dynamic thermal optimization.

This market report delivers critical intelligence on thermal management technology evolution, market sizing and forecasts through 2036, competitive landscape analysis, and strategic recommendations for industry participants ranging from established thermal management suppliers to innovative startups developing breakthrough technologies. The analysis covers market dynamics across geographic regions, application segments, and technology categories while providing detailed company profiles of leading market participants and emerging technology developers.

The report addresses fundamental thermal management challenges including power delivery optimization, thermal interface material selection for TIM1 applications, cooling technology comparison for high-performance computing systems, and integration strategies for hybrid cooling solutions that combine air and liquid cooling approaches. Advanced topics include thermoelectric cooling integration, heat recovery systems, cooling system reliability and redundancy strategies, and next-generation technologies including bio-inspired thermal management and metamaterial heat spreaders.

Market forecasts encompass thermal interface materials by type and application, liquid cooling system adoption across market segments, advanced thermal materials evolution, and geographic market distribution patterns that reflect regional concentrations of semiconductor manufacturing, data center development, and automotive electronics production. The analysis includes detailed examination of market drivers, technology adoption curves, pricing evolution, and competitive dynamics that shape market development through 2036.

Report contents include:

  • Advanced semiconductor packaging evolution from 2D to 2.5D and 3D integration technologies
  • Power delivery challenges and thermal management requirements for next-generation packages
  • TSV performance analysis and transition from lateral to vertical power delivery architectures
  • Thermal interface material selection criteria and cooling technology assessment for HPC applications
  • Technology Analysis & Innovation Trends:
    • 2.5D and 3D advanced semiconductor packaging technologies including CoWoS development roadmap
    • Interconnection technology evolution including bumping technologies and copper-to-copper hybrid bonding
    • Manufacturing yield considerations, cost analysis, and substrate technology evolution
    • Assembly and test challenges for advanced packages with multi-die integration complexity
  • Power Management Systems:
    • Advanced power delivery networks (PDNs) and power supply noise management strategies
    • Dynamic voltage and frequency scaling (DVFS), power gating, and clock gating implementations
    • Integrated voltage regulators (IVRs) in interposers and switched capacitor voltage converters
    • Magnetic integration in package substrates and AI-driven dynamic power management systems
  • Thermal Materials & Solutions:
    • Novel thermal materials including die-attach technologies and TIM1 applications in 3D packaging
    • Emerging thermal technologies: carbon nanotube thermal interface materials and comprehensive graphene analysis
    • Advanced materials: aerogel-based thermal solutions, metamaterial heat spreaders, and bio-inspired approaches
    • Thermal modeling and simulation including multi-physics requirements and AI-enhanced design optimization
  • Liquid Cooling Technologies:
    • Comprehensive liquid cooling technology comparison and rack-level power limitation analysis
    • Chip-level cooling approaches and advanced cooling integration strategies
    • Hybrid cooling systems combining air and liquid technologies with thermoelectric integration
    • Heat recovery and reuse systems with cooling system reliability and redundancy assessment
  • Market Forecasts (2026-2036):
    • TIM1 and TIM1.5 market forecasts by type, area, and revenue with detailed package type analysis
    • Liquid cooling market penetration by segment and geographic market distribution patterns
    • Advanced thermal materials market evolution and technology adoption timeline projections
    • Package size impact analysis and emerging technology market development trajectories
  • Company Profiles: comprehensive profiles of 48 leading companies across the thermal management ecosystem, including established industry leaders and innovative technology developers: 2D Generation, 2D Photonics/CamGraphIC, 3M, Accelsius, Akash Systems, Apheros, Arieca Inc., Asperitas Immersed Computing, Black Semiconductor GmbH, BNNano, Boyd Corporation, Carbice Corp., First Graphene Ltd., Carbon Waters, Destination 2D, Dexerials Corporation, Engineered Fluids, Fujitsu Laboratories, Global Graphene Group, Graphmatech AB, Green Revolution Cooling (GRC), Henkel AG & Co. KGAA, Huntsman Corporation, Iceotope, Indium Corporation, JetCool Technologies, KULR Technology Group Inc., LG Innotek, LiquidCool Solutions, Maxwell Labs, Momentive Performance Materials, Nexalus, NovoLINC, and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Advanced semiconductor packaging-2D architectures to advanced 2.5D and 3D integration technologies
  • 1.2. Challenges
    • 1.2.1. Power delivery
    • 1.2.2. Thermal management
  • 1.3. TSV Performance
  • 1.4. Transition from lateral to vertical power delivery
  • 1.5. Thermal interface material selection for TIM1 applications
  • 1.6. Cooling Technologies for HPC

2. INTRODUCTION

  • 2.1. Thermal design power (TDP)
  • 2.2. Advanced Semiconductor Packaging Technologies in HPC chips
    • 2.2.1. Thermal properties
    • 2.2.2. Thermal Benefits
    • 2.2.3. TDP in Advanced Packaging
  • 2.3. 2.5D and 3D Packaging in GPUs
  • 2.4. Evolution of planar die packaging area for GPUs
  • 2.5. Thermal management of high-power advanced packages

3. 2.5D AND 3D ADVANCED SEMICONDUCTOR PACKAGING TECHNOLOGIES

  • 3.1. Introduction
  • 3.2. Modern semiconductor packaging technology
  • 3.3. Optimization of advanced semiconductor packaging technologies
  • 3.4. Interconnection technology
  • 3.5. 2.5D packaging
    • 3.5.1. Chip-on-Wafer-on-Substrate (CoWoS)
  • 3.6. Bumping technologies
    • 3.6.1. Overview
    • 3.6.2. Challenges
    • 3.6.3. Micro-bump technology
    • 3.6.4. Copper-to-copper hybrid bonding
  • 3.7. Manufacturing Yield
  • 3.8. Cost Analysis
  • 3.9. Substrate Technology Evolution (Silicon vs Organic vs Glass)
  • 3.10. Assembly and Test Challenges for Advanced Packages

4. POWER MANAGEMENT

  • 4.1. Introduction
  • 4.2. Power delivery systems
  • 4.3. Ecosystem for HPC chips
  • 4.4. Advanced Power Delivery Networks (PDNs)
  • 4.5. Power supply noise
  • 4.6. Dynamic Voltage and Frequency Scaling (DVFS)
  • 4.7. Power Gating
  • 4.8. Clock Gating
  • 4.9. Integrated Voltage Regulators (IVRs) in Interposers
  • 4.10. Switched Capacitor Voltage Converters
  • 4.11. Magnetic Integration in Package Substrates
  • 4.12. AI-Driven Dynamic Power Management
  • 4.13. Thermal Management Runtime Loops
  • 4.14. On-Package Voltage Regulation (OPVR)
  • 4.15. Decoupling Capacitors (Decaps)
  • 4.16. Low-Resistance Interconnects
  • 4.17. Challenges

5. NOVEL THERMAL MATERIALS AND SOLUTIONS FOR ADVANCED PACKAGING

  • 5.1. Introduction
    • 5.1.1. Progression toward three-dimensional packaging architectures
  • 5.2. Die-attach technology
  • 5.3. TIM1 in 3D Semiconductor Packaging
    • 5.3.1. Overview
    • 5.3.2. Applications
    • 5.3.3. Selection and optimization of TIM1 materials
    • 5.3.4. Liquid Cooling Technologies
  • 5.4. Emerging Thermal Technologies
    • 5.4.1. Carbon Nanotube Thermal Interface Materials
    • 5.4.2. Graphene
      • 5.4.2.1. Graphene Manufacturing: CVD vs Solution Processing vs Mechanical Exfoliation
      • 5.4.2.2. Graphene Quality Metrics
      • 5.4.2.3. Graphene-Polymer Composites for TIM Applications
      • 5.4.2.4. Graphene Oxide vs Reduced Graphene Oxide
      • 5.4.2.5. Vertical Graphene Structures
      • 5.4.2.6. Graphene-Metal Matrix Composites
      • 5.4.2.7. Graphene Heat Spreaders and Thermal Planes
      • 5.4.2.8. Graphene-Enhanced Phase Change Materials
      • 5.4.2.9. Graphene Thermal Interface Films vs Pastes
      • 5.4.2.10. Multi-Layer Graphene Thermal Management Systems
    • 5.4.3. Aerogel-Based Thermal Solutions
    • 5.4.4. Metamaterial Heat Spreaders
    • 5.4.5. Bio-Inspired Thermal Management Approaches
  • 5.5. Thermal Modelling and Simulation
    • 5.5.1. Multi-Physics Simulation Requirements
    • 5.5.2. AI-Enhanced Thermal Design Optimization
    • 5.5.3. Real-Time Thermal Monitoring Integration

6. LIQUID COOLING

  • 6.1. Overview
  • 6.2. Liquid Cooling Technologies
  • 6.3. Rack-level power limitations
  • 6.4. Chip-level cooling approaches
  • 6.5. Advanced Cooling Integration
    • 6.5.1. Hybrid Cooling Systems (Air + Liquid)
    • 6.5.2. Thermoelectric Cooling Integration
    • 6.5.3. Heat Recovery and Reuse Systems
    • 6.5.4. Cooling System Reliability and Redundancy
  • 6.6. Cooling Technology Comparison

7. GLOBAL MARKET FORECASTS

  • 7.1. By Type
  • 7.2. By Area
  • 7.3. By Revenues
  • 7.4. By Package Type
  • 7.5. Liquid Cooling Market Forecast
  • 7.6. Advanced Thermal Materials Market Evolution
  • 7.7. Geographic Market Distribution

8. COMPANY PROFILES (48 company profiles)

9. REFERENCES

List of Tables

  • Table 1. Evolution of semiconductor packaging
  • Table 2. Comparison Table of 2.5D and 3D IC Integration in HPC chips
  • Table 3. Overview of Power Management Components for HPC chips
  • Table 4. Impact of Key Design Parameters on PDN Performance in 2.5D Integration
  • Table 5. Backside Power Delivery for Next Generation HPC chips
  • Table 6. TSV Reliability in Advanced Packaging
  • Table 7. Lateral Power Delivery (LPD) to Vertical Power Delivery (VPD)
  • Table 8. Thermal interface material selection for TIM1
  • Table 9. Diamond as substrate materials
  • Table 10. Cooling Technologies for HPC
  • Table 11. TDP Trends for HPC (High Performance Computing) Chips to 2025
  • Table 12. Comparison of 2.5D and 3D IC Integration in HPC chips
  • Table 13. TDP Implications in Advanced Packaging
  • Table 14. 2.5D and 3D Packaging in GPUs
  • Table 15. Evolution of planar die packaging area for GPUs
  • Table 16. Cooling Strategies for High-Power 2.5D/3D Packages
  • Table 17. Advanced cooling strategies
  • Table 18. Semiconductor packaging technology
  • Table 19. Key metrics for advanced semiconductor packaging performance
  • Table 20. Interconnection techniques in semiconductor packaging
  • Table 21. Thermal management in 2.5D packaging
  • Table 22. Bumping Technology Overview
  • Table 23. Challenges in scaling bumps
  • Table 24. 3.8 micrometer bump for advanced semiconductor packaging
  • Table 25. Bumpless Cu-Cu hybrid bonding Overview
  • Table 26. Manufacturing Yield Considerations in Advanced Packaging
  • Table 27. Cost Analysis: 2.5D vs 3D Implementation Economics
  • Table 28. Substrate Technology Evolution (Silicon vs Organic vs Glass)
  • Table 29. Assembly and Test Challenges for Advanced Packages
  • Table 30. Power Delivery in Advanced Semiconductor Packaging for HPC
  • Table 31. Power Management Components for HPC chips
  • Table 32. Advanced power delivery networks for HPC packaging
  • Table 33. Overview of Power gating technology
  • Table 34. OPVR Implementation
  • Table 35. Decoupling Technology
  • Table 36. Trend Towards 3D Packaging and Advanced Thermal Management
  • Table 37. Die-Attach for CPUs, GPUs and Memory Modules
  • Table 38. Die Attach Materials Comparison
  • Table 39. TIM1 applications in advanced packaging
  • Table 40. Selection and optimization of TIM1 materials
  • Table 41. Microfluidic cooling for advanced semiconductor packaging forecast: 2026-2036 (units)
  • Table 42. Liquid Cooling Options
  • Table 43. Carbon Nanotube Thermal Interface Materials
  • Table 44. Graphene Manufacturing for TIMs
  • Table 45. Layer Count, Defect Density, and Thermal Performance
  • Table 46. Graphene-Polymer Composites for TIM Applications
  • Table 47. Graphene Oxide vs Reduced Graphene Oxide Trade-offs
  • Table 48. Vertical Graphene Structures for Enhanced Heat Transfer
  • Table 49. Graphene-metal matrix composites
  • Table 50. Cost Reduction Roadmap for Graphene Materials
  • Table 51. Aerogel-Based Thermal Solutions
  • Table 52. Metamaterial heat spreaders
  • Table 53. Bio-inspired thermal management approaches
  • Table 54. Comparison of Liquid Cooling Technologies
  • Table 55. Power Limitation of Different Cooling on Rack Level
  • Table 56. Chip-level cooling approaches
  • Table 57. Hybrid Cooling System Performance Comparison
  • Table 58. Thermoelectric Cooling Integration Specifications
  • Table 59. Heat Recovery System Economics
  • Table 60. Cooling System Reliability Analysis
  • Table 61. Cooling Technology Comparison
  • Table 62. Market share forecast of TIM1 and TIM1.5 for advanced semiconductor packaging forecast, by type 2026-2036
  • Table 63. TIM1 and TIM1.5 for advanced semiconductor packaging, revenues forecast by type, 2026-2036
  • Table 64. TIM1 and TIM1.5 area forecast for advanced semiconductor packaging, 2026-2036
  • Table 65. TIM1 and TIM1.5 market size forecast for advanced semiconductor packaging 2026-2036
  • Table 66. Thermal Management Market by Package Type, 2026-2036
  • Table 67. Package Size Impact Analysis
  • Table 68. Liquid cooling for data center forecast 2025-2036
  • Table 69. Liquid Cooling Market Penetration by Segment, 2025-2036
  • Table 70. Advanced Thermal Materials Market Forecast, 2026-2036
  • Table 71. Geographic Market Analysis

List of Figures

  • Figure 1. Scheme of the three essential components in power devices thermal management and the big gap between the theoretical limit and current developed TIMs
  • Figure 2. Schematic of thermal interface materials used in a flip chip package
  • Figure 3. Evolution roadmap of semiconductor packaging
  • Figure 4. 2.5D packaging structure
  • Figure 5. CoWoS - development progress and roadmap
  • Figure 6. Typical IC package construction identifying TIM1 and TIM2
  • Figure 7. Transtherm-R PCMs
  • Figure 8. Carbice carbon nanotubes
  • Figure 9. Internal structure of carbon nanotube adhesive sheet
  • Figure 10. Carbon nanotube adhesive sheet
  • Figure 11. HI-FLOW Phase Change Materials
  • Figure 12. Shinko Carbon Nanotube TIM product
  • Figure 13. The Sixth Element graphene products
  • Figure 14. Thermal conductive graphene film
  • Figure 15. Submer's immersion cooling tanks
  • Figure 16. VB Series of TIMS from Zeon