類人型機器人的全球市場(2025年~2035年)
市場調查報告書
商品編碼
1654631

類人型機器人的全球市場(2025年~2035年)

The Global Humanoid Robots Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 361 Pages, 129 Tables, 54 Figures | 訂單完成後即時交付

價格

新興的人形機器人市場是一個重要的技術前沿,具有複雜的經濟影響。目前的市場預測估計,在人工智慧和自主系統進步的推動下,到 2035 年潛在市場規模將達到 380 億美元。主要技術發展主要集中在美國和中國。由於勞動力市場預計將出現經濟混亂,早期的申請將集中在製造業、物流業和專業服務環境。人形機器人的技術成熟度仍處於早期階段,實際應用目前僅限於受控的工業環境。持續的研究和開發對於確定人形機器人技術的長期可行性和經濟影響至關重要。實現多功能、經濟高效且能夠進行複雜、自適應的類人互動的自主系統仍面臨重大挑戰。

0

本報告提供全球類人型機器人市場相關資料詳細分析,提供複數產業上技術的進步,市場動態,未來的可能性相關知識和見解。

目錄

第1章 簡介

  • 類人型機器人:定義與特徵
  • 過去的概要與演進
  • 類人型機器人的現狀(2025年)
  • 類人型機器人的重要性
  • 市場與用途(TRL)
  • 商業開發的階段和模式
  • 投資與資金籌措
  • 成本
  • 推動市場要素
  • 課題
  • 全球法規
  • 日本市場
  • 美國市場
  • 中國市場

第2章 技術和零組件的分析

  • 類人型機器人設計的進步
  • 重要的零組件
  • 智慧型控制系統,最佳化
  • 先進的機器人工學,自動化
  • 製造
  • 腦機介面
  • 機器人工學,智慧型健康
  • 微~奈米機器人
  • 醫療,復健機器人
  • 機械電子學和機器人工學
  • 影像處理,機器人工學,智慧型願景
  • AI,機器學習
  • 感測器,認識技術
  • 電力,能源管理
  • 致動器
  • 馬達
  • 減速機
  • 螺釘
  • 軸承
  • 扶手效應器
  • 類人型機器人SoC
  • 雲端機器人工學和IoRT(Internet of Robotic Things)
  • 人機互動 (HRI)、社交機器人
  • 仿生、生物啟發設計
  • 人形機器人材料
  • 皮膚組織黏合

第3章 最終用途市場

  • 市場供應鏈
  • 商業化的層級
  • 醫療·支援
  • 教育·研究
  • 顧客服務·飯店
  • 娛樂·休閒
  • 製造·工業
  • 軍事·防衛
  • 個人使用·家庭環境

第4章 全球市場規模(數量收益)(2025年~2035年)

  • 全球出貨台數(總合)
  • 台數:機器人各類型
  • 台數:各地區
  • 收益(總合)
  • 收益:各最終用途市場
  • 汽車
  • 物流·倉庫
  • 電池容量(GWh)預測
  • 硬體設備零組件

第5章 企業簡介(59企業的簡介)

第6章 學術界所開發的類人型機器人

第7章 調查手法

第8章 參考文獻

The emerging humanoid robotics market represents a significant technological frontier with complex economic implications. Current market projections estimate a potential market value of $38 billion by 2035, driven by advances in artificial intelligence and autonomous systems. Key technological developments are primarily concentrated in the United States and China. Economic disruption is expected in labour markets, with early applications focusing on manufacturing, logistics, and specialized service environments. The technological maturity of humanoid robots remains in early stages, with practical deployment currently limited to controlled industrial settings. Ongoing research and development will be critical in determining the long-term viability and economic impact of humanoid robotic technologies. Significant challenges persist in achieving versatile, cost-effective autonomous systems capable of complex, adaptive human-like interactions.

"The Global Humanoid Robots Market 2025-2035" provides an in-depth analysis of the global humanoid robotics sector, offering u insights into technological advancements, market dynamics, and future potential across multiple industries.

Contents include:

  • Detailed analysis of global humanoid robot market
  • Comprehensive technology assessment
  • In-depth exploration of end-use markets
  • Conservative and optimistic market projections
  • Global regulatory landscape examination
  • Technical analysis covering:
    • Advanced robotics design
    • Intelligent control systems
    • Sensor and perception technologies
    • Materials innovation
    • Power and energy management
    • Human-robot interaction methodologies
  • Extensive market segmentation across critical domains including:
    • Healthcare and Assistance
    • Education and Research
    • Customer Service
    • Entertainment
    • Manufacturing
    • Military and Defense
    • Personal and Domestic Applications
  • Comprehensive regional analysis including:
    • United States market dynamics
    • China's technological ecosystem
    • Japanese robotics innovations
    • Emerging market opportunities
  • Company and Technology Landscape. Detailed profiles of 59 humanoid robotics companies including Addverb Technologies, Agibot, Agility Robotics, Apptronik, Baidu, Beijing HRIC, Boardwalk Robotics, Booster Robotics, Boston Dynamics, BXI Robotics, Clone Robotics, Cosine Robots, Dataa Robotics, Dreame Technology, Electron Robots, Elephant Robotics, Embodied, EngineAI, Engineered Arts, EX Robots, FDROBOT, Figure AI, Fourier Intelligence, GAC, Galbot, Generation Robots, Hanson Robotics, Honda, Humanoid, Humanoid Robots (Shanghai) Limited, Kawasaki Heavy Industries, Kepler, K-Scale Labs, Leju Robotics, LimX Dynamics, Macco Robotics, Mentee Robotics, Mimic, Neura Robotics, NVIDIA, 1X Technologies, Oversonic, PAL Robotics, PaXini Technology, Persona AI, Rainbow Robotics, Rhoban Robots, RobotEra and more...

Table of Contents

1. INTRODUCTION

  • 1.1. Humanoid Robots: Definition and Characteristics
  • 1.2. Historical Overview and Evolution
  • 1.3. Current State of Humanoid Robots in 2025
  • 1.4. The Importance of Humanoid Robots
  • 1.5. Markets and Applications (TRL)
  • 1.6. Models and Stage of Commercial Development
  • 1.7. Investments and Funding
  • 1.8. Costs
    • 1.8.1. Type
    • 1.8.2. Components
    • 1.8.3. Cost Evolution
  • 1.9. Market Drivers
    • 1.9.1. Advancements in Artificial Intelligence (AI) and Machine Learning (ML)
    • 1.9.2. Labour force shortages
    • 1.9.3. Labour force substitution
    • 1.9.4. Need for Personal Assistance and Companionship
    • 1.9.5. Exploration of Hazardous and Extreme Environments
  • 1.10. Challenges
    • 1.10.1. Commercial Challenges
    • 1.10.2. Technical Challenges
  • 1.11. Global regulations
  • 1.12. Market in Japan
  • 1.13. Market in United States
  • 1.14. Market in China

2. TECHNOLOGY AND COMPONENT ANALYSIS

  • 2.1. Advancements in Humanoid Robot Design
  • 2.2. Critical Components
  • 2.3. Intelligent Control Systems and Optimization
  • 2.4. Advanced Robotics and Automation
  • 2.5. Manufacturing
    • 2.5.1. Design and Prototyping
    • 2.5.2. Component Manufacturing
    • 2.5.3. Assembly and Integration
    • 2.5.4. Software Integration and Testing
    • 2.5.5. Quality Assurance and Performance Validation
    • 2.5.6. Challenges
      • 2.5.6.1. Actuators
      • 2.5.6.2. Reducers
      • 2.5.6.3. Thermal management
      • 2.5.6.4. Batteries
      • 2.5.6.5. Cooling
      • 2.5.6.6. Sensors
  • 2.6. Brain Computer Interfaces
  • 2.7. Robotics and Intelligent Health
    • 2.7.1. Robotic Surgery and Minimally Invasive Procedures
    • 2.7.2. Rehabilitation and Assistive Robotics
    • 2.7.3. Caregiving and Assistive Robots
    • 2.7.4. Intelligent Health Monitoring and Diagnostics
    • 2.7.5. Telemedicine and Remote Health Management
    • 2.7.6. Robotics in Mental Health
  • 2.8. Micro-nano Robots
  • 2.9. Medical and Rehabilitation Robots
  • 2.10. Mechatronics and Robotics
  • 2.11. Image Processing, Robotics and Intelligent Vision
  • 2.12. Artificial Intelligence and Machine Learning
    • 2.12.1. Overview
    • 2.12.2. AI Hardware and Software
      • 2.12.2.1. Functions
      • 2.12.2.2. Simulation
      • 2.12.2.3. Motion Planning and Control
      • 2.12.2.4. Foundation Models
      • 2.12.2.5. Synthetic Data Generation
      • 2.12.2.6. Multi-contact planning and control
    • 2.12.3. End-to-end AI
    • 2.12.4. Multi-modal AI algorithms
  • 2.13. Sensors and Perception Technologies
    • 2.13.1. Vision Systems
      • 2.13.1.1. Commerical examples
    • 2.13.2. Hybrid LiDAR-camera approaches
    • 2.13.3. Cameras and LiDAR
      • 2.13.3.1. Cameras (RGB, depth, thermal, event-based)
      • 2.13.3.2. Stereo vision and 3D perception
      • 2.13.3.3. Optical character recognition (OCR)
      • 2.13.3.4. Facial recognition and tracking
      • 2.13.3.5. Gesture recognition
      • 2.13.3.6. mmWave Radar
    • 2.13.4. Tactile and Force Sensors
      • 2.13.4.1. Value proposition of advanced tactile systems
      • 2.13.4.2. Commercial examples
      • 2.13.4.3. Flexible tactile sensors
      • 2.13.4.4. Tactile sensing for humanoid extremities
      • 2.13.4.5. Tactile sensors (piezoresistive, capacitive, piezoelectric)
      • 2.13.4.6. Force/torque sensors (strain gauges, load cells)
      • 2.13.4.7. Haptic feedback sensors
      • 2.13.4.8. Skin-like sensor arrays
    • 2.13.5. Auditory Sensors
      • 2.13.5.1. Microphones (array, directional, binaural)
      • 2.13.5.2. Sound Localization and Source Separation
      • 2.13.5.3. Speech Recognition and Synthesis
      • 2.13.5.4. Acoustic Event Detection
    • 2.13.6. Inertial Measurement Units (IMUs)
      • 2.13.6.1. Accelerometers
      • 2.13.6.2. Gyroscopes
      • 2.13.6.3. Magnetometers
      • 2.13.6.4. Attitude and Heading Reference Systems (AHRS)
    • 2.13.7. Proximity and Range Sensors
      • 2.13.7.1. Ultrasonic sensors
      • 2.13.7.2. Laser range finders (LiDAR)
      • 2.13.7.3. Radar sensors
      • 2.13.7.4. Time-of-Flight (ToF) sensors
    • 2.13.8. Environmental Sensors
      • 2.13.8.1. Temperature sensors
      • 2.13.8.2. Humidity sensors
      • 2.13.8.3. Gas and chemical sensors
      • 2.13.8.4. Pressure sensors
    • 2.13.9. Biometric Sensors
      • 2.13.9.1. Heart rate sensors
      • 2.13.9.2. Respiration sensors
      • 2.13.9.3. Electromyography (EMG) sensors
      • 2.13.9.4. Electroencephalography (EEG) sensors
    • 2.13.10. Sensor Fusion
      • 2.13.10.1. Kalman Filters
      • 2.13.10.2. Particle Filters
      • 2.13.10.3. Simultaneous Localization and Mapping (SLAM)
      • 2.13.10.4. Object Detection and Recognition
      • 2.13.10.5. Semantic Segmentation
      • 2.13.10.6. Scene Understanding
  • 2.14. Power and Energy Management
    • 2.14.1. Battery Technologies
    • 2.14.2. Challenges
    • 2.14.3. Energy Harvesting and Regenerative Systems
      • 2.14.3.1. Energy Harvesting Techniques
      • 2.14.3.2. Regenerative Braking Systems
      • 2.14.3.3. Hybrid Power Systems
    • 2.14.4. Power Distribution and Transmission
      • 2.14.4.1. Efficient Power Distribution Architectures
      • 2.14.4.2. Advanced Power Electronics and Motor Drive Systems
      • 2.14.4.3. Distributed Power Systems and Intelligent Load Management
    • 2.14.5. Thermal Management
      • 2.14.5.1. Cooling Systems
      • 2.14.5.2. Thermal Modeling and Simulation Techniques
      • 2.14.5.3. Advanced Materials and Coatings
    • 2.14.6. Energy-Efficient Computing and Communication
      • 2.14.6.1. Low-Power Computing Architectures
      • 2.14.6.2. Energy-Efficient Communication Protocols and Wireless Technologies
      • 2.14.6.3. Intelligent Power Management Strategies
    • 2.14.7. Wireless Power Transfer and Charging
    • 2.14.8. Energy Optimization and Machine Learning
  • 2.15. Actuators
    • 2.15.1. Humanoid robot actuation systems
    • 2.15.2. Actuators in humanoid joint systems
    • 2.15.3. Energy transduction mechanism
  • 2.16. Motors
    • 2.16.1. Overview
    • 2.16.2. Frameless motors
    • 2.16.3. Brushed/Brushless Motors
    • 2.16.4. Coreless motors
  • 2.17. Reducers
    • 2.17.1. Harmonic reducers
    • 2.17.2. RV (Rotary Vector) reducers
    • 2.17.3. Planetary gear systems
  • 2.18. Screws
    • 2.18.1. Screw-based transmission systems
    • 2.18.2. Ball screw assemblies
    • 2.18.3. Planetary Roller Screws
  • 2.19. Bearings
    • 2.19.1. Overview
  • 2.20. Arm Effectors
    • 2.20.1. Overview
    • 2.20.2. Hot-swappable end effector systems
    • 2.20.3. Challenges
  • 2.21. SoCs for Humanoid Robotics
  • 2.22. Cloud Robotics and Internet of Robotic Things (IoRT)
  • 2.23. Human-Robot Interaction (HRI) and Social Robotics
  • 2.24. Biomimetic and Bioinspired Design
  • 2.25. Materials for Humanoid Robots
    • 2.25.1. New materials development
    • 2.25.2. Metals
      • 2.25.2.1. Magnesium Alloy
    • 2.25.3. Shape Memory Alloys
    • 2.25.4. Plastics and Polymers
    • 2.25.5. Composites
    • 2.25.6. Elastomers
    • 2.25.7. Smart Materials
    • 2.25.8. Textiles
    • 2.25.9. Ceramics
    • 2.25.10. Biomaterials
    • 2.25.11. Nanomaterials
    • 2.25.12. Coatings
      • 2.25.12.1. Self-healing coatings
      • 2.25.12.2. Conductive coatings
  • 2.26. Binding Skin Tissue

3. END USE MARKETS

  • 3.1. Market supply chain
  • 3.2. Level of commercialization
  • 3.3. Healthcare and Assistance
  • 3.4. Education and Research
  • 3.5. Customer Service and Hospitality
  • 3.6. Entertainment and Leisure
  • 3.7. Manufacturing and Industry
    • 3.7.1. Overview
      • 3.7.1.1. Assembly and Production
      • 3.7.1.2. Quality Inspection
      • 3.7.1.3. Warehouse Assistance
    • 3.7.2. Automotive
      • 3.7.2.1. Commercial examples
    • 3.7.3. Logistics
      • 3.7.3.1. Warehouse environments
      • 3.7.3.2. Commercial examples
  • 3.8. Military and Defense
  • 3.9. Personal Use and Domestic Settings

4. GLOBAL MARKET SIZE (UNITS AND REVENUES) 2025-2035

  • 4.1. Global shipments in units (Total)
  • 4.2. By type of robot in units
  • 4.3. By region in units
  • 4.4. Revenues (Total)
  • 4.5. Revenues (By end use market)
  • 4.6. Automotive
    • 4.6.1. Revenues
    • 4.6.2. Units
    • 4.6.3. Deployment
  • 4.7. Logistics and warehousing
    • 4.7.1. Revenues
    • 4.7.2. Units
    • 4.7.3. Deployment
  • 4.8. Battery Capacity (GWh) Forecast
  • 4.9. Hardware Components

5. COMPANY PROFILES (59 company profiles)

6. HUMANOID ROBOTS DEVELOPED BY ACADEMIA

7. RESEARCH METHODOLOGY

8. REFERENCES

List of Tables

  • Table 1. Core Components of Humanoid Robots
  • Table 2. Classification of Humanoid Robots
  • Table 3. Historical Overview and Evolution of Humanoid Robots
  • Table 4. Importance of humanoid robots by end use
  • Table 5. Markets and applications for humanoid robots and TRL
  • Table 6. Humanoid Robots under commercial development
  • Table 7. Comparison of major humanoid robot prototypes
  • Table 8. Humanoid Robot investments 2023-2025
  • Table 9. Overall Sector Funding
  • Table 10. Cost Breakdown by Humanoid Type
  • Table 11. Cost Analysis by Component for Humanoid Robots
  • Table 12. Average Unit Cost (Thousands USD)
  • Table 13. Year-over-Year Cost Reduction (%)
  • Table 14. Cost Breakdown by Component (% of Total Cost, 2025 vs 2035)
  • Table 15. Cost Evolution Projections
  • Table 16. Market drivers for humanoid robots
  • Table 17. Market challenges for humanoid robots
  • Table 18. Technical challenges for humanoid robots
  • Table 19. Global regulatory landscape for humanoid robots
  • Table 20. Performance Parameters of Humanoid Robots
  • Table 21. Common Actuators in Humanoid Robotics
  • Table 22. Software and Functions in Humanoid Robots
  • Table 23. Sensors and Perception Technologies for humanoid robotics
  • Table 24. Comparison of LiDAR, Cameras, and 1D/3D Ultrasonic Sensors
  • Table 25. Categorization of LiDAR in Humanoids
  • Table 26. LiDAR Costs
  • Table 27. LiDAR Costs in Humanoid Robots
  • Table 28. Tactile and force sensors for humanoid robots,
  • Table 29. Benchmarking Tactile Sensors by Technology
  • Table 30. Challenges of Tactile Sensors and Electronic Skins
  • Table 31. Auditory sensors for humanoid robots
  • Table 32. Inertial Measurement Units (IMUs) for humanoid robots
  • Table 33. Key characteristics of proximity and range sensors commonly used in humanoid robots
  • Table 34. Environmental Sensors for humanoid robots
  • Table 35. Biometric sensors commonly used in humanoid robots:
  • Table 36. Power and Energy Management in Humanoid Robotics.- Integrated Systems Overview
  • Table 37. Energy Management Strategies for Humanoid Robots
  • Table 38. Advanced Power Management Technologies
  • Table 39. Battery technologies for humanoid robotics
  • Table 40. Battery Capacity per Humanoid Robot for Industrial Applications
  • Table 41. Humanoid Batteries - Parameters Comparison
  • Table 42. Challenges of Batteries in Humanoid Robots
  • Table 43. Energy Harvesting and Regenerative Systems in Humanoid Robots
  • Table 44.Power Distribution and Transmission Techniques in Humanoid Robots
  • Table 45. Thermal Management Techniques for Humanoid Robots
  • Table 46. Energy-Efficient Computing and Communication Techniques for Humanoid Robots
  • Table 47. Wireless Power Transfer and Charging for Humanoid Robots
  • Table 48. Actuator Components
  • Table 49. Actuator Types
  • Table 50. Pros and Cons Comparison
  • Table 51. Joint Application Matrix
  • Table 52. Comparison of Electric, Hydraulic, and Pneumatic Actuators
  • Table 53. Actuator challenges
  • Table 54. Direct Drive vs. Geared Comparison
  • Table 55. Motors for Commercial Humanoid Robots
  • Table 56. Benefits and Drawbacks of Coreless Motors
  • Table 57. Benchmarking of Reducers
  • Table 58. Bearings for Humanoids
  • Table 59. Actuation Methods of Humanoid's Hands
  • Table 60. Technical barriers of humanoid's hands
  • Table 61. Key aspects of Cloud Robotics and Internet of Robotic Things (IoRT) for humanoid robotics
  • Table 62. Examples of Biomimetic Design for Humanoid Robots
  • Table 63. Examples of Bioinspired Design for Humanoid Robots
  • Table 64. Types of metals commonly used in humanoid robots
  • Table 65. Types of plastics and polymers commonly used in humanoid robots
  • Table 66. PEEK - Costs and Technical Properties
  • Table 67. Types of composites commonly used in humanoid
  • Table 68. Types of elastomers commonly used in humanoid robots
  • Table 69. Types of smart materials in humanoid robotics
  • Table 70. Types of textiles commonly used in humanoid robots
  • Table 71. Types of ceramics commonly used in humanoid robots
  • Table 72. Biomaterials commonly used in humanoid robotics
  • Table 73. Types of nanomaterials used in humanoid robotics
  • Table 74. Types of coatings used in humanoid robotics
  • Table 75. Industry Segment Adoption Timeline
  • Table 76. Level of commercialization of humanoid robots by application
  • Table 77. Market Drivers in healthcare and assistance
  • Table 78. Applications of humanoid robots in healthcare and assistance
  • Table 79. Technology Readiness Level (TRL) Table; humanoid robots in healthcare and assistance
  • Table 80. Market Drivers in education and research
  • Table 81. Applications of humanoid robots in education and research
  • Table 82. Technology Readiness Level (TRL) for humanoid robots in education and research
  • Table 83. Market Drivers in Customer Service and Hospitality
  • Table 84. Technology Readiness Level (TRL) for humanoid robots in Customer Service and Hospitality
  • Table 85. Market Drivers in Entertainment and Leisure
  • Table 86. Applications of humanoid robots in Entertainment and Leisure
  • Table 87. Technology Readiness Level (TRL) for humanoid robots in Entertainment and Leisure
  • Table 88. Market Drivers manufacturing and industry
  • Table 89. Applications for humanoid robots in manufacturing and industry
  • Table 90. Humanoid Robots in the Automotive Sector
  • Table 91. Implementation of humanoids in automotive manufacturing
  • Table 92. Humanoid robots in the logistics industry
  • Table 93. Timeline of Tasks Handled by Humanoid Robots in Logistics
  • Table 94. Market Drivers in Military and Defense
  • Table 95. Applications for humanoid robots in Military and Defense
  • Table 96. Technology Readiness Level (TRL) for humanoid robots in Military and Defense
  • Table 97. Market Drivers in Personal Use and Domestic Settings
  • Table 98. Applications in humanoid robots in Personal Use and Domestic Settings
  • Table 99. Technology Readiness Level (TRL) humanoid robots in Personal Use and Domestic Settings
  • Table 100. Global humanoid robot shipments (1,000 units) 2024-2035, conservative estimate
  • Table 101. Global humanoid robot shipments (Millions units) 2024-2035, optimistic estimate
  • Table 102. Global humanoid robot shipments by type (Million units) 2024-2035, conservative estimate
  • Table 103. Global humanoid robot shipments by type (Million units) 2024-2035, optimistic estimate
  • Table 104. Global humanoid robot shipments by region (Million units) 2024-2035, conservative estimate
  • Table 105. Global humanoid robot shipments by region (Million units) 2024-2035, optimistic estimate
  • Table 106. Global humanoid robot shipments (Millions USD) 2024-2035, conservative estimate
  • Table 107. Global humanoid robot shipments (Millions USD) 2024-2035, optimistic estimate
  • Table 108. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, conservative estimate
  • Table 109. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, optimistic estimate
  • Table 110. Global Market Revenues for Humanoid Robots in the Automotive Industry: 2025-2035
  • Table 111. Global market forecast of humanoid robots in the Automotive industry: 2025-2035
  • Table 112.Deployment Distribution by 2035 (Conservative Estimate)
  • Table 113. Deployment Distribution by 2035 (Optimistic Estimate)
  • Table 114. Market Size Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate
  • Table 115. Market Size Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Optimistic Estimate
  • Table 116. Global Volume Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate
  • Table 117. Global Volume Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate, Optimistic Estimate
  • Table 118. Market Value Distribution by Application Area (2035, Conservative)
  • Table 119. Market Value Distribution by Application Area (2035, Optimistic)
  • Table 120. Battery Capacity (GWh) Forecast for Humanoid Robots Used for Industries 2025-2035
  • Table 121. Battery Capacity by Industry Segment (GWh, 2035)
  • Table 122.Average Battery Capacity per Humanoid Robot (kWh)
  • Table 123. Humanoid Robot Hardware Component Volume Forecast, 2025-2035
  • Table 124. Humanoid Robot Hardware Component Market Size Forecast: 2025-2035, Conservative Estimate (Millions USD)
  • Table 125. Humanoid Robot Hardware Component Market Size Forecast: 2025-2035, Optimistic Estimate (Millions USD)
  • Table 126. Component Market Share (Conservative Estimate)
  • Table 127. Component Market Share (Optimistic Estimate)
  • Table 128. Average Component Cost per Robot (Thousands USD)
  • Table 129. Humanoid Robots Developed by Academia

List of Figures

  • Figure 1. Core components of a humanoid robot
  • Figure 2. Status of humanoid robots
  • Figure 3. Humanoid robot for railroad maintenance to be implemented by West Japan Railway Co
  • Figure 4. Historical progression of humanoid robots
  • Figure 5. Event-based cameras
  • Figure 6. Humanoid Robots Market Supply Chain
  • Figure 7. Global humanoid robot shipments (1,000 units) 2024-2035, conservative estimate
  • Figure 8. Global humanoid robot shipments (1,000 units) 2024-2035, optimistic estimate
  • Figure 9. Global humanoid robot shipments by type (Million units) 2024-2035, conservative estimate
  • Figure 10. Global humanoid robot shipments by type (Million units) 2024-2035, optimistic estimate
  • Figure 11. Global humanoid robot shipments by region (Million units) 2024-2035, conservative estimate
  • Figure 12. Global humanoid robot shipments by region (Million units) 2024-2035, optimistic estimate
  • Figure 13. Global humanoid robot shipments (Millions USD) 2024-2035, conservative estimate
  • Figure 14. Global humanoid robot shipments (Millions USD) 2024-2035, optimistic estimate
  • Figure 15. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, conservative estimate
  • Figure 16. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, optimistic estimate
  • Figure 17. RAISE-A1
  • Figure 18. Digit humanoid robot
  • Figure 19. Apptronick Apollo
  • Figure 20. Alex
  • Figure 21. BR002
  • Figure 22. Atlas
  • Figure 23. XR-4
  • Figure 24. Dreame Technology's second-generation bionic robot dog and general-purpose humanoid robot
  • Figure 25. Mercury X1
  • Figure 26. Mirokai robots
  • Figure 27. Ameca
  • Figure 28. Prototype Ex-Robots humanoid robots
  • Figure 29. Figure.ai humanoid robot
  • Figure 30. Figure 02 humanoid robot
  • Figure 31. GR-1
  • Figure 32. Sophia
  • Figure 33. Honda ASIMO
  • Figure 34. Kaleido
  • Figure 35. Forerunner
  • Figure 36. Kuafu
  • Figure 37. CL-1
  • Figure 38. MagicHand S01
  • Figure 39. EVE/NEO
  • Figure 40. Tora-One
  • Figure 41. HUBO2
  • Figure 42. XBot-L
  • Figure 43. Sanctuary AI Phoenix
  • Figure 44. Pepper Humanoid Robot
  • Figure 45. Astribot S1
  • Figure 46. Tesla Optimus Gen 2
  • Figure 47. Toyota T-HR3
  • Figure 48. UBTECH Walker
  • Figure 49. G1 foldable robot
  • Figure 50. Unitree H1
  • Figure 51. WANDA
  • Figure 52. CyberOne
  • Figure 53. PX5
  • Figure 54. Q Family robots from the Institute of Automation, Chinese Academy of Sciences