小型模組化反應器(SMR)的全球市場(2025年~2045年)
市場調查報告書
商品編碼
1556878

小型模組化反應器(SMR)的全球市場(2025年~2045年)

The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045

出版日期: | 出版商: Future Markets, Inc. | 英文 328 Pages, 84 Tables, 37 Figures | 訂單完成後即時交付

價格

全球小型模組化反應器 (SMR) 市場是核工業中最有前景的領域之一,其特點是創新的反應器設計,電功率輸出通常低於 300 MWe。這個新興市場的驅動力在於對低碳能源解決方案的追求,這些解決方案與傳統的大型核電廠相比,具有更高的靈活性、更低的財務風險和更高的安全性。隨著世界各國加強應對氣候變遷的力度,同時對能源安全的擔憂日益加劇,SMR 被定位為一種兼具可靠基荷發電和靈活部署能力的有前景的解決方案。市場成長預測因部署情況而異,保守估計到 2030 年全球市場規模約為 100 億至 150 億美元,而更樂觀的預測表明,隨著技術的成熟,到 2035 年,SMR 市場規模可能達到 400 億至 500 億美元。目前,北美市場引領 SMR 的開發活動,美國政府透過先進反應器示範計畫等項目提供了大量資金。亞太地區是成長最快的區域市場,主要受中國營運的高溫氣冷堆(HTR-PM)和俄羅斯的浮動核電廠驅動。

競爭格局以老牌核電企業和創新新創為主。通用電氣日立、西屋電氣和俄羅斯原子能公司等傳統核電供應商正在利用其現有技術專長設計和開發小型模組化反應器(SMR),而 NuScale Power、TerraPower 和 X-energy 等新進入者則憑藉其創新方法吸引了大量投資。英國的勞斯萊斯小型模組化反應器(SMR)計畫體現了許多國家對發展國內小型模組化反應器能力的戰略重要性,加拿大、法國和韓國也正在實施類似的舉措。

市場中的技術細分涵蓋多種反應器類型和不同的開發時間表。由於監管機構熟悉且技術準備就緒,輕水反應器設計是近期部署的主要類型,其中 NuScale 的 VOYGR 和通用電氣日立的 BWRX-300 在監管流程中進展最快。高溫氣冷堆為工業應用提供製程加熱能力,而採用液態金屬和熔鹽技術的更先進設計則能提升性能,並瞄準更長期的市場機會。

關鍵的市場推動因素包括脫碳政策、能源安全問題、燃煤電廠替代機會、以及工業領域的應用。將小型模組化反應器 (SMR) 融入更廣泛的能源系統代表著關鍵的價值主張,尤其體現在它能夠推動清潔氫氣,並在可再生能源滲透率較高的系統中提供電網穩定服務。軍事和偏遠地區應用程式構成了具有獨特需求且價格接受度較高的專業化細分市場。

市場面臨多重重大挑戰,包括獨特的監管障礙、資本密集型項目的複雜融資、供應鏈開發需求以及社會認可度考量。對於有意部署 SMR 的國家而言,建立標準化組件的製造能力既是挑戰,也是機會。

國際原子能總署小型模組化反應器 (SMR) 平台等倡議以及各種雙邊協議促進了知識共享和監管協調。出口市場開發仍是供應商國家的戰略重點,尤其是美國、俄羅斯、中國和英國。隨著設計達到商業化水平,我們預期國際部署的競爭將更加激烈。從示範專案到商業機組部署的過渡將是未來十年市場面臨的核心挑戰,而 "世界首創" 專案的成功可能會對全球能源格局的後續市場走勢、投資流向和技術選擇模式產生重大影響。

本報告研究了快速發展的全球小型模組化反應器 (SMR) 市場,透過對市場推動因素、技術創新、部署方案、監管框架和競爭格局的深入分析,提供了切實可行的見解。

目錄

第1章 摘要整理

  • 市場概要
  • 市場預測
  • 技術趨勢
  • 法規形勢

第2章 簡介

  • SMR定義與特徵
  • 確立的核能技術
  • SMR技術的歷史與演進
  • SMR的優點和缺點
  • 傳統的核子反應爐的比較
  • 目前SMR核子反應爐的設計和計劃
  • SMR的類型
  • SMR的用途
  • 市場課題
  • SMR的安全性

第3章 全球能源形勢和SMR所扮演的角色

  • 當前全球能源結構
  • 預計能源需求 (2025-2045)
  • 氣候變遷減緩與 "巴黎協定"
  • 永續發展目標背景下的核能
  • 小型模組化反應器 (SMR) 作為清潔能源轉型的解決方案

第4章 技術概要

  • 小型模組化反應器 (SMR) 設計原則
  • 主要部件和系統
  • 安全特性與非能動安全系統
  • 循環與廢棄物管理
  • 先進製造技術
  • 模組化與工廠化製造
  • 運輸與現場組裝
  • 電網整合與負載追蹤能力
  • 新科技與未來發展

第5章 法規結構和授權

  • 國際原子能總署 (IAEA) 指南
  • 核管管理委員會 (NRC) 對小型模組化反應器 (SMR) 的方法
  • 歐洲核子管理委員會 (ENSREG)觀點
  • 監理挑戰與協調活動
  • 小型反應器 (SMR) 許可流程
  • 環境影響評估
  • 社會認可與利害關係人參與

第6章 市場分析

  • 全球市場規模與成長預測(2025年~2045年)
  • 市場區隔
    • 核子反應爐類別
    • 各用途
    • 各地區
  • SWOT分析
  • 價值鏈分析
  • 成本分析與經濟可行性
  • 資金籌措模式和投資策略
  • 地區市場分析
    • 北美
    • 歐洲
    • 其他的歐洲
    • 亞太地區
    • 中東·非洲
    • 南美

第7章 競爭情形

  • 競爭策略
  • 近幾年的市場新聞
  • 新產品的開發與創新
  • SMR民間投資

第8章 SMR展開情勢

  • 首創 (FOAK) 計劃
  • 懷舊 (NOAK) 計劃
  • 部署時間表和里程碑
  • 發電容量擴張預測 (2025-2045)
  • 市場滲透率分析
  • 老化核電機組的替換
  • 與再生能源系統的整合

第9章 經濟影響的分析

  • 創造就業機會和技能發展
  • 區域和國家經濟效益
  • 對能源的影響價格
  • 與其他清潔能源技術的比較

第10章 環境和社會的影響

  • 減碳潛力
  • 土地使用與選址考慮因素
  • 用水和熱污染
  • 放射性廢棄物管理
  • 公共衛生與安全
  • 社會認可與社區參與

第11章 政策與政府的配合措施

  • 國家核子政策
  • 小型反應器專項支援計劃
  • 研發資金
  • 國際合作與技術轉讓
  • 出口管制與防擴散措施

第12章 課題與機會

  • 技術課題
  • 經濟上的課題
  • 法規上的課題
  • 社會,政治課題
  • 機會

第13章 未來預測和情勢

  • 技術路線圖 (2025-2045)
  • 市場發展情景
  • 長期市場預測 (2045年及以後)
  • 潛在的顛覆性技術
  • 包含小型模組化反應器 (SMR) 整合的全球能源結構情景

第14章 案例研究

  • NuScale Power 的 VOYGR (TM) SMR 發電廠
  • 勞斯萊斯的英國 SMR 項目
  • 中國的高溫氣冷堆 (HTR-PM) 示範項目
  • 俄羅斯的浮動核電廠(羅蒙諾索夫院士號)
  • 加拿大的 SMR 行動計劃

第15章 投資分析

  • 投資報酬率(ROI)的預測
  • 風險評估,減輕策略
  • 那個其他的能源投資的比較分析
  • 官民合作關係模式

第16章 企業簡介(企業33公司的簡介)

第17章 附錄

第18章 參考文獻

The global Small Modular Reactor (SMR) market represents one of the most promising segments within the nuclear energy industry, characterized by innovative reactor designs with electrical outputs typically below 300 MWe. This emerging market is driven by the search for low-carbon energy solutions that offer greater flexibility, reduced financial risk, and enhanced safety features compared to conventional large-scale nuclear plants. As countries worldwide strengthen climate commitments while facing increasing energy security concerns, SMRs are positioned as a potential solution that combines reliable baseload generation with deployment versatility. Market growth projections vary significantly based on deployment scenarios, with conservative estimates valuing the global market at approximately $10-15 billion by 2030, while more optimistic projections suggest potential growth to $40-50 billion by 2035 as the technology matures. The North American market currently leads development efforts, with the United States government providing substantial funding through programs like the Advanced Reactor Demonstration Program. Asia-Pacific represents the fastest-growing regional market, driven primarily by China's operational HTR-PM and Russia's floating nuclear plants, with significant investment also occurring in South Korea, Japan, and India.

The competitive landscape features both established nuclear industry players and innovative startups. Traditional nuclear vendors like GE Hitachi, Westinghouse, and Rosatom have developed SMR designs leveraging their existing technological expertise, while newcomers such as NuScale Power, TerraPower, and X-energy have attracted significant investment with novel approaches. The UK's Rolls-Royce SMR program exemplifies the strategic national importance many countries place on developing domestic SMR capabilities, with similar initiatives underway in Canada, France, and South Korea.

Technology segmentation within the market spans multiple reactor types with varying development timelines. Light water reactor designs dominate near-term deployments due to regulatory familiarity and technological readiness, with NuScale's VOYGR and GE Hitachi's BWRX-300 among the most advanced in regulatory processes. High-temperature gas-cooled reactors offer process heat capabilities for industrial applications, while more advanced designs utilizing liquid metal or molten salt technologies target longer-term market opportunities with enhanced performance characteristics.

Key market drivers include decarbonization policies, energy security concerns, coal plant replacement opportunities, and industrial sector applications. The integration of SMRs within broader energy systems, particularly as enablers for clean hydrogen production and providers of grid stability services in systems with high renewable penetration, represents a significant value proposition. Military and remote community applications create specialized market segments with unique requirements and potentially higher price tolerance.

The market faces several significant challenges, including first-of-a-kind regulatory hurdles, financing complexities for capital-intensive projects, supply chain development needs, and public acceptance considerations. The necessity of establishing manufacturing capacity for standardized components represents both a challenge and an opportunity for industrial development in countries pursuing SMR deployment.

International collaboration has emerged as a defining characteristic of the market, with initiatives like the IAEA's SMR Platform and various bilateral agreements facilitating knowledge sharing and harmonized approaches to regulation. Export market development remains a strategic priority for vendor countries, particularly the United States, Russia, China, and the United Kingdom, with competition for international deployments expected to intensify as designs reach commercial readiness. Over the next decade, the transition from demonstration projects to commercial fleet deployment represents the central market challenge, with successful first-of-a-kind projects likely to significantly influence subsequent market trajectories, investment flows, and technology selection patterns across the global energy landscape.

"The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045" provides in-depth analysis and strategic intelligence on the rapidly evolving Global Nuclear Small Modular Reactors (SMRs) market from 2025-2045. As countries worldwide intensify efforts to achieve net-zero emissions while ensuring energy security, SMRs have emerged as a transformative solution offering reduced capital costs, enhanced safety features, and versatile applications beyond traditional electricity generation. The report meticulously examines market drivers, technological innovations, deployment scenarios, regulatory frameworks, and competitive landscapes to deliver actionable insights for investors, energy companies, policymakers, and industry stakeholders. With detailed data on market segmentation by reactor type, application, and geographical region, this comprehensive analysis presents three growth scenarios with quantitative projections spanning two decades.

Report Contents include:

  • Market Overview and Forecast (2025-2045) - Detailed market size projections, growth trajectories, and regional breakdowns with CAGR analysis and value forecasts.
  • Technological Analysis - Comprehensive evaluation of diverse SMR technologies including Light Water Reactors (LWRs), High-Temperature Gas-Cooled Reactors (HTGRs), Fast Neutron Reactors (FNRs), Molten Salt Reactors (MSRs), and emerging microreactor designs
  • Competitive Landscape - Strategic positioning, innovation pipelines, competitive advantages, and market share analysis of 33 leading and emerging SMR developers with detailed company profiles
  • Regulatory Framework Analysis - International and regional licensing approaches, harmonization efforts, policy incentives, and export control considerations affecting market development
  • Economic Impact Assessment - Job creation potential, ROI projections, cost-benefit analyses, and comparative economics against traditional nuclear and renewable energy alternatives
  • Deployment Scenarios - Detailed timelines and milestones for First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK) deployments with capacity addition forecasts through 2045
  • Applications Analysis - Market potential across diverse applications including electricity generation, industrial process heat, district heating, hydrogen production, desalination, remote power, and marine propulsion
  • Investment Analysis - Financing models, risk assessment methodologies, public-private partnership structures, and ROI comparisons with alternative energy investments
  • Environmental and Social Impact - Carbon emissions reduction potential, land use comparisons, water usage analysis, waste management strategies, and public acceptance considerations
  • Case Studies - In-depth analysis of pioneering SMR projects including NuScale Power VOYGR(TM), Rolls-Royce UK SMR, China's HTR-PM, Russia's Akademik Lomonosov, and the Canadian SMR Action Plan
  • Future Outlook - Long-term market projections beyond 2045, technology roadmaps, potential disruptive technologies, and global energy mix scenarios with SMR integration
  • Regional Market Analysis - Detailed assessments of market opportunities and regulatory environments across North America, Europe, Asia-Pacific, Middle East & Africa, and Latin America

The report provides comprehensive profiles of 33 leading and emerging companies including Aalo Atomics, ARC Clean Technology, Blue Capsule, Blykalla, BWX Technologies, China National Nuclear Corporation (CNNC), Deep Fission, EDF, GE Hitachi Nuclear Energy, General Atomics, Hexana, Holtec International, Kairos Power, Karnfull Next, Korea Atomic Energy Research Institute (KAERI), Last Energy, Moltex Energy, Naarea, Nano Nuclear Energy, Newcleo, NuScale Power, Oklo, Rolls-Royce SMR, Rosatom, Saltfoss Energy and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. The nuclear industry
    • 1.1.2. Nuclear as a source of low-carbon power
    • 1.1.3. Challenges for nuclear power
    • 1.1.4. Construction and costs of commercial nuclear power plants
    • 1.1.5. Renewed interest in nuclear energy
    • 1.1.6. Projections for nuclear installation rates
    • 1.1.7. Nuclear energy costs
    • 1.1.8. SMR benefits
    • 1.1.9. Decarbonization
  • 1.2. Market Forecast
  • 1.3. Technological Trends
  • 1.4. Regulatory Landscape

2. INTRODUCTION

  • 2.1. Definition and Characteristics of SMRs
  • 2.2. Established nuclear technologies
  • 2.3. History and Evolution of SMR Technology
    • 2.3.1. Nuclear fission
    • 2.3.2. Controlling nuclear chain reactions
    • 2.3.3. Fuels
    • 2.3.4. Safety parameters
      • 2.3.4.1. Void coefficient of reactivity
      • 2.3.4.2. Temperature coefficient
    • 2.3.5. Light Water Reactors (LWRs)
    • 2.3.6. Ultimate heat sinks (UHS)
  • 2.4. Advantages and Disadvantages of SMRs
  • 2.5. Comparison with Traditional Nuclear Reactors
  • 2.6. Current SMR reactor designs and projects
  • 2.7. Types of SMRs
    • 2.7.1. Designs
    • 2.7.2. Coolant temperature
    • 2.7.3. The Small Modular Reactor landscape
    • 2.7.4. Light Water Reactors (LWRs)
      • 2.7.4.1. Pressurized Water Reactors (PWRs)
        • 2.7.4.1.1. Overview
        • 2.7.4.1.2. Key features
        • 2.7.4.1.3. Examples
      • 2.7.4.2. Pressurized Heavy Water Reactors (PHWRs)
        • 2.7.4.2.1. Overview
        • 2.7.4.2.2. Key features
        • 2.7.4.2.3. Examples
      • 2.7.4.3. Boiling Water Reactors (BWRs)
        • 2.7.4.3.1. Overview
        • 2.7.4.3.2. Key features
        • 2.7.4.3.3. Examples
    • 2.7.5. High-Temperature Gas-Cooled Reactors (HTGRs)
      • 2.7.5.1. Overview
      • 2.7.5.2. Key features
      • 2.7.5.3. Examples
    • 2.7.6. Fast Neutron Reactors (FNRs)
      • 2.7.6.1. Overview
      • 2.7.6.2. Key features
      • 2.7.6.3. Examples
    • 2.7.7. Molten Salt Reactors (MSRs)
      • 2.7.7.1. Overview
      • 2.7.7.2. Key features
      • 2.7.7.3. Examples
    • 2.7.8. Microreactors
      • 2.7.8.1. Overview
      • 2.7.8.2. Key features
      • 2.7.8.3. Examples
    • 2.7.9. Heat Pipe Reactors
      • 2.7.9.1. Overview
      • 2.7.9.2. Key features
      • 2.7.9.3. Examples
    • 2.7.10. Liquid Metal Cooled Reactors
      • 2.7.10.1. Overview
      • 2.7.10.2. Key features
      • 2.7.10.3. Examples
    • 2.7.11. Supercritical Water-Cooled Reactors (SCWRs)
      • 2.7.11.1. Overview
      • 2.7.11.2. Key features
    • 2.7.12. Pebble Bed Reactors
      • 2.7.12.1. Overview
      • 2.7.12.2. Key features
  • 2.8. Applications of SMRs
    • 2.8.1. Electricity Generation
      • 2.8.1.1. Overview
      • 2.8.1.2. Cogeneration
    • 2.8.2. Process Heat for Industrial Applications
      • 2.8.2.1. Overview
      • 2.8.2.2. Strategic co-location of SMRs
      • 2.8.2.3. High-temperature reactors
      • 2.8.2.4. Coal-fired power plant conversion
    • 2.8.3. Nuclear District Heating
    • 2.8.4. Desalination
    • 2.8.5. Remote and Off-Grid Power
    • 2.8.6. Hydrogen and industrial gas production
    • 2.8.7. Space Applications
    • 2.8.8. Marine SMRs
  • 2.9. Market challenges
  • 2.10. Safety of SMRs

3. GLOBAL ENERGY LANDSCAPE AND THE ROLE OF SMRs

  • 3.1. Current Global Energy Mix
  • 3.2. Projected Energy Demand (2025-2045)
  • 3.3. Climate Change Mitigation and the Paris Agreement
  • 3.4. Nuclear Energy in the Context of Sustainable Development Goals
  • 3.5. SMRs as a Solution for Clean Energy Transition

4. TECHNOLOGY OVERVIEW

  • 4.1. Design Principles of SMRs
  • 4.2. Key Components and Systems
  • 4.3. Safety Features and Passive Safety Systems
  • 4.4. Cycle and Waste Management
  • 4.5. Advanced Manufacturing Techniques
  • 4.6. Modularization and Factory Fabrication
  • 4.7. Transportation and Site Assembly
  • 4.8. Grid Integration and Load Following Capabilities
  • 4.9. Emerging Technologies and Future Developments

5. REGULATORY FRAMEWORK AND LICENSING

  • 5.1. International Atomic Energy Agency (IAEA) Guidelines
  • 5.2. Nuclear Regulatory Commission (NRC) Approach to SMRs
  • 5.3. European Nuclear Safety Regulators Group (ENSREG) Perspective
  • 5.4. Regulatory Challenges and Harmonization Efforts
  • 5.5. Licensing Processes for SMRs
  • 5.6. Environmental Impact Assessment
  • 5.7. Public Acceptance and Stakeholder Engagement

6. MARKET ANAYSIS

  • 6.1. Global Market Size and Growth Projections (2025-2045)
  • 6.2. Market Segmentation
    • 6.2.1. By Reactor Type
    • 6.2.2. By Application
    • 6.2.3. By Region
  • 6.3. SWOT Analysis
  • 6.4. Value Chain Analysis
  • 6.5. Cost Analysis and Economic Viability
  • 6.6. Financing Models and Investment Strategies
  • 6.7. Regional Market Analysis
    • 6.7.1. North America
      • 6.7.1.1. United States
      • 6.7.1.2. Canada
    • 6.7.2. Europe
      • 6.7.2.1. United Kingdom
      • 6.7.2.2. France
      • 6.7.2.3. Russia
    • 6.7.3. Other European Countries
    • 6.7.4. Asia-Pacific
      • 6.7.4.1. China
      • 6.7.4.2. Japan
      • 6.7.4.3. South Korea
      • 6.7.4.4. India
      • 6.7.4.5. Other Asia-Pacific Countries
    • 6.7.5. Middle East and Africa
    • 6.7.6. Latin America

7. COMPETITIVE LANDSCAPE

  • 7.1. Competitive Strategies
  • 7.2. Recent market news
  • 7.3. New Product Developments and Innovations
  • 7.4. SMR private investment

8. SMR DEPOLYMENT SCENARIOS

  • 8.1. First-of-a-Kind (FOAK) Projects
  • 8.2. Nth-of-a-Kind (NOAK) Projections
  • 8.3. Deployment Timelines and Milestones
  • 8.4. Capacity Additions Forecast (2025-2045)
  • 8.5. Market Penetration Analysis
  • 8.6. Replacement of Aging Nuclear Fleet
  • 8.7. Integration with Renewable Energy Systems

9. ECONOMIC IMPACT ANALYSIS

  • 9.1. Job Creation and Skill Development
  • 9.2. Local and National Economic Benefits
  • 9.3. Impact on Energy Prices
  • 9.4. Comparison with Other Clean Energy Technologies

10. ENVIRONMENTAL AND SOCIAL IMPACT

  • 10.1. Carbon Emissions Reduction Potential
  • 10.2. Land Use and Siting Considerations
  • 10.3. Water Usage and Thermal Pollution
  • 10.4. Radioactive Waste Management
  • 10.5. Public Health and Safety
  • 10.6. Social Acceptance and Community Engagement

11. POLICY AND GOVERNMENT INITIATIVES

  • 11.1. National Nuclear Energy Policies
  • 11.2. SMR-Specific Support Programs
  • 11.3. Research and Development Funding
  • 11.4. International Cooperation and Technology Transfer
  • 11.5. Export Control and Non-Proliferation Measures

12. CHALLENGES AND OPPORTUNITIES

  • 12.1. Technical Challenges
    • 12.1.1. Design Certification and Licensing
    • 12.1.2. Fuel Development and Supply
    • 12.1.3. Component Manufacturing and Quality Assurance
    • 12.1.4. Grid Integration and Load Following
  • 12.2. Economic Challenges
    • 12.2.1. Capital Costs and Financing
    • 12.2.2. Economies of Scale
    • 12.2.3. Market Competition from Other Energy Sources
  • 12.3. Regulatory Challenges
    • 12.3.1. Harmonization of International Standards
    • 12.3.2. Site Licensing and Environmental Approvals
    • 12.3.3. Liability and Insurance Issues
  • 12.4. Social and Political Challenges
    • 12.4.1. Public Perception and Acceptance
    • 12.4.2. Nuclear Proliferation Concerns
    • 12.4.3. Waste Management and Long-Term Storage
  • 12.5. Opportunities
    • 12.5.1. Decarbonization of Energy Systems
    • 12.5.2. Energy Security and Independence
    • 12.5.3. Industrial Applications and Process Heat
    • 12.5.4. Remote and Off-Grid Power Solutions
    • 12.5.5. Nuclear-Renewable Hybrid Energy Systems

13. FUTURE OUTLOOK AND SCENARIOS

  • 13.1. Technology Roadmap (2025-2045)
  • 13.2. Market Evolution Scenarios
  • 13.3. Long-Term Market Projections (Beyond 2045)
  • 13.4. Potential Disruptive Technologies
  • 13.5. Global Energy Mix Scenarios with SMR Integration

14. CASE STUDIES

  • 14.1. NuScale Power VOYGR(TM) SMR Power Plant
  • 14.2. Rolls-Royce UK SMR Program
  • 14.3. China's HTR-PM Demonstration Project
  • 14.4. Russia's Floating Nuclear Power Plant (Akademik Lomonosov)
  • 14.5. Canadian SMR Action Plan

15. INVESTMENT ANALYSIS

  • 15.1. Return on Investment (ROI) Projections
  • 15.2. Risk Assessment and Mitigation Strategies
  • 15.3. Comparative Analysis with Other Energy Investments
  • 15.4. Public-Private Partnership Models

16. COMPANY PROFILES(33 company profiles)

17. APPENDICES

  • 17.1. Research Methodology

18. REFERENCES

List of Tables

  • Table 1. Motivation for Adopting SMRs
  • Table 2. Generations of nuclear technologies
  • Table 3. SMR Construction Economics
  • Table 4. Cost of Capital for SMRs vs. Traditional NPP Projects
  • Table 5. Comparative Costs of SMRs with Other Types
  • Table 6. SMR Benefits
  • Table 7. SMR Market Growth Trajectory, 2025-2045
  • Table 8. Technological trends in Nuclear Small Modular Reactors (SMR)
  • Table 9. Regulatory landscape for Nuclear Small Modular Reactors (SMR)
  • Table 10. Designs by generation
  • Table 11. Established nuclear technologies
  • Table 12. Advantages and Disadvantages of SMRs
  • Table 13. Comparison with Traditional Nuclear Reactors
  • Table 14. SMR Projects
  • Table 15. Project Types by Reactor Class
  • Table 16. SMR Technology Benchmarking
  • Table 17. Comparison of SMR Types: LWRs, HTGRs, FNRs, and MSRs
  • Table 18. Types of PWR
  • Table 19. Key Features of Pressurized Water Reactors (PWRs)
  • Table 20. Comparison of Leading Gen III/III+ Designs
  • Table 21. Gen-IV Reactor Designs
  • Table 22. Key Features of Pressurized Heavy Water Reactors
  • Table 23. Key Features of Boiling Water Reactors (BWRs)
  • Table 24. HTGRs- Rankine vs. Brayton vs. Combined Cycle Generation
  • Table 25. Key Features of High-Temperature Gas-Cooled Reactors (HTGRs)
  • Table 26. Comparing LMFRs to Other Gen IV Types
  • Table 27. Markets and Applications for SMRs
  • Table 28. SMR Applications and Their Market Share, 2025-2045
  • Table 29. Development Status
  • Table 30. Market Challenges for SMRs
  • Table 31. Global Energy Mix Projections, 2025-2045
  • Table 32. Projected Energy Demand (2025-2045)
  • Table 33. Key Components and Systems
  • Table 34. Key Safety Features of SMRs
  • Table 35. Advanced Manufacturing Techniques
  • Table 36. Emerging Technologies and Future Developments in SMRs
  • Table 37.SMR Licensing Process Timeline
  • Table 38. SMR Market Size by Reactor Type, 2025-2045
  • Table 39. SMR Market Size by Application, 2025-2045
  • Table 40. SMR Market Size by Region, 2025-2045
  • Table 41. Cost Breakdown of SMR Construction and Operation
  • Table 42. Financing Models for SMR Projects
  • Table 43. Projected SMR Capacity Additions by Region, 2025-2045
  • Table 44. Competitive Strategies in SMR
  • Table 45. Nuclear Small Modular Reactor (SMR) Market News 2022-2024
  • Table 46. New Product Developments and Innovations
  • Table 47. SMR private investment
  • Table 48. Major SMR Projects and Their Status, 2025
  • Table 49. SMR Deployment Scenarios: FOAK vs. NOAK
  • Table 50. SMR Deployment Timeline, 2025-2045
  • Table 51. Job Creation in SMR Industry by Sector
  • Table 52. Comparison with Other Clean Energy Technologies
  • Table 53. Comparison of Carbon Emissions: SMRs vs. Other Energy Sources
  • Table 54. Carbon Emissions Reduction Potential of SMRs, 2025-2045
  • Table 55. Land Use Comparison: SMRs vs. Traditional Nuclear Plants
  • Table 56. Water Usage Comparison: SMRs vs. Traditional Nuclear Plants
  • Table 57. Government Funding for SMR Research and Development by Country
  • Table 58. Government Initiatives Supporting SMR Development by Country
  • Table 59. National Nuclear Energy Policies
  • Table 60. SMR-Specific Support Programs
  • Table 61. R&D Funding Allocation for SMR Technologies
  • Table 62. International Cooperation Networks in SMR Development
  • Table 63. Export Control and Non-Proliferation Measures
  • Table 64. Technical Challenges in SMR Development and Deployment
  • Table 65. Economic Challenges in SMR Commercialization
  • Table 66. Economies of Scale in SMR Production
  • Table 67. Market Competition: SMRs vs. Other Clean Energy Technologies
  • Table 68. Regulatory Challenges for SMR Adoption
  • Table 69. Regulatory Harmonization Efforts for SMRs Globally
  • Table 70. Liability and Insurance Models for SMR Operations
  • Table 71. Social and Political Challenges for SMR Implementation
  • Table 72. Non-Proliferation Measures for SMR Technology
  • Table 73. Waste Management Strategies for SMRs
  • Table 74. Decarbonization Potential of SMRs in Energy Systems
  • Table 75. SMR Applications in Industrial Process Heat
  • Table 76. Off-Grid and Remote Power Solutions Using SMRs
  • Table 77. SMR Market Evolution Scenarios, 2025-2045
  • Table 78. Long-Term Market Projections for SMRs (Beyond 2045)
  • Table 79. Potential Disruptive Technologies in Nuclear Energy
  • Table 80. Global Energy Mix Scenarios with SMR Integration, 2045
  • Table 81. ROI Projections for SMR Investments, 2025-2045
  • Table 82. Risk Assessment and Mitigation Strategies
  • Table 83. Comparative Analysis with Other Energy Investments
  • Table 84. Public-Private Partnership Models for SMR Projects

List of Figures

  • Figure 1. Schematic of Small Modular Reactor (SMR) operation
  • Figure 2. Linglong One
  • Figure 3. Pressurized Water Reactors
  • Figure 4. CAREM reactor
  • Figure 5. Westinghouse Nuclear AP300(TM) Small Modular Reactor
  • Figure 6. Advanced CANDU Reactor (ACR-300) schematic
  • Figure 7. GE Hitachi's BWRX-300
  • Figure 8. The nuclear island of HTR-PM Demo
  • Figure 9. U-Battery schematic
  • Figure 10. TerraPower's Natrium
  • Figure 11. Russian BREST-OD-300
  • Figure 12. Terrestrial Energy's IMSR
  • Figure 13. Moltex Energy's SSR
  • Figure 14. Westinghouse's eVinci
  • Figure 15. GE Hitachi PRISM
  • Figure 16. Leadcold SEALER
  • Figure 17. SCWR schematic
  • Figure 18. SWOT Analysis of the SMR Market
  • Figure 19. Nuclear SMR Value Chain
  • Figure 20. Global SMR Capacity Forecast, 2025-2045
  • Figure 21. SMR Market Penetration in Different Energy Sectors
  • Figure 22. SMR Fuel Cycle Diagram
  • Figure 23. Power plant with small modular reactors
  • Figure 24. Nuclear-Renewable Hybrid Energy System Configurations
  • Figure 25. Technical Readiness Levels of Different SMR Technologies
  • Figure 26. Technology Roadmap (2025-2045)
  • Figure 27. NuScale Power VOYGR(TM) SMR Power Plant Design
  • Figure 28. China's HTR-PM Demonstration Project Layout
  • Figure 29. Russia's Floating Nuclear Power Plant Schematic
  • Figure 30. ARC-100 sodium-cooled fast reactor
  • Figure 31. ACP100 SMR
  • Figure 32. Deep Fission pressurised water reactor schematic
  • Figure 33. NUWARD SMR design
  • Figure 34. A rendering image of NuScale Power's SMR plant
  • Figure 35. Oklo Aurora Powerhouse reactor
  • Figure 36. Multiple LDR-50 unit plant
  • Figure 37. AP300(TM) Small Modular Reactor