封面
市場調查報告書
商品編碼
1463549

全球注塑模內標市場 - 2024-2031

Global Injection In-Mold Labels Market - 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 201 Pages | 商品交期: 約2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

概述

全球注塑模內標籤市場將於 2023 年達到 14 億美元,預計到 2031 年將達到 20 億美元,2024-2031 年預測期間複合CAGR為 5.2%。

隨著人們對永續發展和環境責任的日益關注,對環保包裝解決方案(例如注塑模內標籤)的需求越來越大。採用可回收材料生產的 IML 具有環保印刷選項,可促進永續性並吸引注重環保的消費者和企業。注塑模內標籤可以整合密封、穿孔或全像元素等防篡改功能,為消費者提供產品完整性和安全性的保證。

當人們擔心商品被篡改和假冒時,製藥和食品等行業對具有安全功能的 IML 的需求也會增加。這些標籤將重要的產品資訊、監管符號和防篡改成分融入包裝容器中,幫助品牌所有者滿足監管標準。美國於 2004 年通過《食品過敏標籤和消費者保護法》,並於 1906 年通過《食品藥物法》

到 2023 年,北美預計將成為第二主導地區,約佔全球注塑模內標籤市場的 25%。北美消費者偏好包裝精美的優質產品。注塑模內標籤提供卓越的印刷品質、充滿活力的圖形和客製化選項,使其成為尋求差異化產品並在商店貨架上創造強烈視覺衝擊力的品牌的理想選擇。

動力學

對高品質圖形和品牌的偏好

注塑模內標籤在列印品質、彩色影像和可自訂選項方面超出了標準標籤流程。產生引人注目的設計、徽標和品牌組件的能力增加了品牌所有者對 IML 的需求,希望使自己的產品脫穎而出並吸引客戶注意力。隨著客戶偏好轉向便利性和品牌商品,生產商尋求 IML 等創意包裝解決方案,以改善產品展示和貨架吸引力。

Cosmo Films 於2019 年9 月推出了極其抗撕裂的合成紙、用於可重新定位和可移除標籤應用的聚丙烯薄膜、啞光塗層壓敏標籤紙薄膜、透明模內標籤薄膜、高速WAL 薄膜和珠光金屬化WAL 薄膜。

科技不斷進步

印刷技術、材料科學和生產方法的不斷改進提高了注塑標籤的品質、效率和多功能性。由於數位印刷、圖形和自動化等創新,製造商現在可以生產具有更高印刷品質、更多客製化可能性和更短週轉時間的 IML。

Tadbik 於 2019 年 3 月宣布推出 RAIN RFID 模內標籤。 M-Line 機器人由位於科羅拉多州柯林斯堡的 Muller Printing Technology Colorado 於 2020 年 3 月發布。

高投資和複雜性

採用 IML 技術需要對專用設備、模具和基礎設施進行大量初始投資。對於中小型組織(SME)或財力較弱的企業來說,初始投資成本是進入射出成型模內標籤市場的障礙。設計和準備注塑標籤的圖稿可能既困難又耗時。

實現理想的套準、色彩一致性和圖形對齊需要專門的知識和技能,這給品牌所有者和包裝設計師帶來了問題。射出成型模內貼標並不適用於所有容器類型、幾何形狀或材質。某些包裝樣式或設計可能會為射出成型模內標籤應用帶來障礙,限制市場的適用性和特定產業或產品類別的潛在成長。

目錄

目錄

第 1 章:方法與範圍

  • 研究方法論
  • 報告的研究目的和範圍

第 2 章:定義與概述

第 3 章:執行摘要

  • 按材料分類
  • 列印技術片段
  • 按應用程式片段
  • 按地區分類的片段

第 4 章:動力學

  • 影響因素
    • 促進要素
      • 對高品質圖形和品牌的偏好
      • 科技不斷進步
    • 限制
      • 高投資和複雜性
    • 機會
    • 影響分析

第 5 章:產業分析

  • 波特五力分析
  • 供應鏈分析
  • 定價分析
  • 監管分析
  • 俄烏戰爭影響分析
  • DMI 意見

第 6 章:COVID-19 分析

  • COVID-19 分析
    • 新冠疫情爆發前的情景
    • 新冠疫情期間的情景
    • 新冠疫情後的情景
  • COVID-19 期間的定價動態
  • 供需譜
  • 疫情期間政府與市場相關的舉措
  • 製造商策略舉措
  • 結論

第 7 章:按材料

  • 聚丙烯
  • 聚乙烯
  • 聚氯乙烯 (PVC)
  • ABS樹脂
  • 其他

第 8 章:透過印刷技術

  • 柔版印刷
  • 膠印
  • 其他

第 9 章:按申請

  • 食品和飲料
  • 化學品
  • 居家及個人護理
  • 消費品
  • 其他

第 10 章:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 俄羅斯
    • 歐洲其他地區
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地區
  • 亞太
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 亞太其他地區
  • 中東和非洲

第 11 章:競爭格局

  • 競爭場景
  • 市場定位/佔有率分析
  • 併購分析

第 12 章:公司簡介

  • CCL Industries, Inc.
    • 公司簡介
    • 產品組合和描述
    • 財務概覽
    • 主要進展
  • Constantia Flexibles Group GmbH
  • Coveris Holdings SA
  • Huhtamaki Group
  • Cenveo Inc.
  • Hammer Packaging
  • Fuji Seal International Inc.
  • Avery Dennison Corporation
  • Innovia Films Ltd.
  • Inland

第 13 章:附錄

簡介目錄
Product Code: PAC8349

Overview

Global Injection In-Mold Labels Market reached US$ 1.4 billion in 2023 and is expected to reach US$ 2.0 billion by 2031, growing with a CAGR of 5.2% during the forecast period 2024-2031.

With a growing focus on sustainability and environmental responsibility, there is a greater need for eco-friendly packaging solutions such as injection in-mold labels. IMLs produced from recyclable materials with eco-friendly printing options promote sustainability and attract environmentally concerned consumers and businesses. Injection in-mold labels can integrate tamper-evident features like seals, perforations or holographic elements, giving consumers with assurances of product integrity and safety.

When concerns about tampering with goods and counterfeiting occurs, so does the demand for IMLs with security features in industries including pharmaceuticals and food. The labels assist brand owners in meeting regulatory standards by incorporating essential product information, regulatory symbols and tamper-evident components into packing containers. The Food Allergy Labeling and Consumer Protection Act was passed in 2004, while the Food and Drugs Act of 1906 was passed in U.S.

In 2023, North America is expected to be the second-dominant region with about 25% of the global injection in-mold labels market. Consumers in North America exhibit a preference for premium-quality products with attractive packaging. Injection in-mold labels offer superior printing quality, vibrant graphics and customization options, making them an ideal choice for brands seeking to differentiate their products and create a strong visual impact on store shelves.

Dynamics

Preference for High-Quality Graphics and Branding

Injection in-mold labels exceed standard labeling processes in terms of printing quality, colorful images and customizable options. The capacity to generate eye-catching designs, logos and branding components increases demand for IMLs from brand owners looking to differentiate their products and capture customer attention. As customer preferences shift towards convenience and branded items, producers seek creative packaging solutions such as IML to improve product presentation and shelf appeal.

Cosmo Films launched extremely tear-resistant synthetic papers, polypropylene films for repositionable and removable label applications, matte coated pressure-sensitive label stock films, transparent in-mold label film, high-speed WAL film and pearlized metalized WAL film in September 2019. Events like these show that the injection in-mold label market will develop during the forecast period.

Growing Advancements in Technology

Continuous improvements in printing technology, materials science and production methods improve the quality, efficiency and versatility of injection-molded labels. Manufacturers may now generate IMLs with higher print quality, more customization possibilities and shorter turnaround times because to innovations like digital printing, graphics and automation.

Tadbik announced the launch of the RAIN RFID In-Mold Label in March 2019. The label has a specially designed antenna with an Impinj Monza R6-P chip, making it appropriate for crates, the food and beverage industry and automobile makers. The M-Line robot was released in March 2020 by Muller Printing Technology Colorado, based in Fort Collins, CO. The integrated robotic and automation system considerably improves the versatility and adaptability for the production of injection-molded packaging.

High Investments and Complexity

Adopting IML technology necessitates a considerable initial investment in specialized equipment, molds and infrastructure. For small and medium-sized organizations (SMEs) or businesses with low financial resources, the initial investment cost acts as a barrier to entering the injection in-mold labels market. Designing and preparing artwork for injection-mold labels can be difficult and time-consuming.

Achieving ideal registration, color consistency and graphics alignment necessitates specialized knowledge and skill, which presents a problem for brand owners and packaging designers. Injection in-mold labeling could not be appropriate for all container types, geometries or materials. Certain packaging styles or designs may provide hurdles for injection in-mold labels application, restricting the market's applicability and potential growth in specific industries or product categories.

Segment Analysis

The global injection in-mold labels market is segmented based on material, printing technology, application and region.

Rising Asthetic Value of Packging in Food & Beverage Sector

Food & beverages are expected to be the dominant segment with over 1/4th of the market during the forecast period 2024-2031. Owing to the importance of packaging aesthetics in the food & beverage industry, in-mold labeling is expected to be widely adopted. Packaging prolongs the shelf life of products and attracts potential purchasers. The increased barrier makes in-mold labeling advantageous for the food and beverage industries, improving the shelf life of packaged commodities.

Muller Printing Technology, a manufacturer of molds and automation solutions for thin wall packaging, stated in September 2022 that their in-mold labelling automation technology would be used in sustainable injection molding packaging. The technology is introduced to produce a 100% monomaterial container composed of totally recyclable polypropylene, together with a wrap-around and bottom polypropylene-based label.

Geographical Penetration

Growing Technology Advancements in Asia-Pacific

Asia-Pacific is expected to be the dominant region in the global injection in-mold labels market covering about 25% of the market. Advances in printing technology, materials science and manufacturing methods improve the efficiency, quality and versatility of injection-mold labels in Asia-Pacific. Digital printing, high-definition graphics and automation all contribute to market growth by allowing for greater customization, cost-effectiveness and shorter production cycles.

In February 2018, Manjushree Technopack expected an increase in demand for in-mold labels and collaborated with vendors to develop label applicators for efficient label application. Furthermore, LabelShimbun predicts that shrink sleeves and in-mold labels will witness greater label usage in October 2019 than pressure-sensitive labels. Regional enterprises use in-mold labeling technologies, which are projected to boost market growth in the region.

Competitive Landscape

The major global players in the market include CCL Industries, Inc., Constantia Flexibles Group GmbH, Coveris Holdings S.A., Huhtamaki Group, Cenveo Inc., Hammer Packaging, Fuji Seal International Inc., Avery Dennison Corporation, Innovia Films Ltd. and Inland.

COVID-19 Impact Analysis

Many manufacturing facilities experienced output delays or temporary shutdowns as a result of government-imposed lockdowns, social distancing measures and labor shortages. The interruptions in production capacity caused delays in order fulfillment, affecting the supply of injection in-mold labels goods to end customers. Changes in consumer behavior during the pandemic, including as increased demand for critical items and movements to internet purchasing, altered the demand for products packed with injection in-mold labels.

While certain industries had an increase in demand, others, like automotive and non-essential consumer items, saw a decrease, hurting total demand for injection in-mold labels. The epidemic has spurred tendencies toward digitalization and automation in industrial processes, such as injection in-mold labeling. Manufacturers engaged in technologies like digital printing, robotics and remote monitoring to improve productivity, save costs and meet changing market expectations.

Russia-Ukraine War Impact

Russia and Ukraine are both major producers of raw materials needed in the manufacture of injection in-mold labels, like polymers and resin. Any disruptions in the availability of these raw materials caused by the conflict, such as trade restrictions, transportation bottlenecks or manufacturing halts, could result in shortages and higher pricing for injection in-mold labels manufacturers globally.

The crisis has an impact on companies that rely significantly on injection in-mold labels, including food and beverage, cosmetics, medicines and consumer goods. Disruptions in the supply chain may cause production delays, shortages or increased costs for packaging materials, affecting the availability and pricing of products packaged using injection in-mold labels.

By Material

  • Polypropylene
  • Polyethylene
  • Polyvinyl Chloride (PVC)
  • ABS Resins
  • Others

By Printing Technology

  • Flexographic Printing
  • Offset Printing
  • Others

By Application

  • Food & Beverages
  • Chemicals
  • Home & Personal Care
  • Consumer Goods
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In 2024, Mold-Tek Packaging Limited made an investment in a Durst RSCi 510mm press with priming and varnishing stations to transform digital printing for in-mold labels.
  • In 2023, SABIC teamed up with three in-mold labeling experts to show the use of certified sustainable polypropylene resins in mono-PP thin-wall container packaging without sacrificing quality, processability, safety or convenience. The single-step IML method decorates the part inside the injection mold, making the label an integrated part of the packaging.
  • In 2023, Multi-Color Corporation, one of the world's major label producers, is happy to announce the acquisition of Korsini, a leading in-mold label solutions provider based in Turkey.

Why Purchase the Report?

  • To visualize the global injection in-mold labels market segmentation based on material, printing technology, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of injection in-mold labels market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global injection in-mold labels market report would provide approximately 62 tables, 56 figures and 201 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Material
  • 3.2.Snippet by Printing Technology
  • 3.3.Snippet by Application
  • 3.4.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Preference for High-Quality Graphics and Branding
      • 4.1.1.2.Growing Advancements in Technology
    • 4.1.2.Restraints
      • 4.1.2.1.High Investments and Complexity
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis
  • 5.5.Russia-Ukraine War Impact Analysis
  • 5.6.DMI Opinion

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID
    • 6.1.2.Scenario During COVID
    • 6.1.3.Scenario Post COVID
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Material

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 7.1.2.Market Attractiveness Index, By Material
  • 7.2.Polypropylene*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Polyethylene
  • 7.4.Polyvinyl Chloride (PVC)
  • 7.5.ABS Resins
  • 7.6.Others

8.By Printing Technology

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Printing Technology
    • 8.1.2.Market Attractiveness Index, By Printing Technology
  • 8.2.Flexographic Printing*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3.Offset Printing
  • 8.4.Others

9.By Application

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2.Market Attractiveness Index, By Application
  • 9.2.Food & Beverages*
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Chemicals
  • 9.4.Home & Personal Care
  • 9.5.Consumer Goods
  • 9.6.Others

10.By Region

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2.Market Attractiveness Index, By Region
  • 10.2.North America
    • 10.2.1.Introduction
    • 10.2.2.Key Region-Specific Dynamics
    • 10.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Printing Technology
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1.U.S.
      • 10.2.6.2.Canada
      • 10.2.6.3.Mexico
  • 10.3.Europe
    • 10.3.1.Introduction
    • 10.3.2.Key Region-Specific Dynamics
    • 10.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Printing Technology
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1.Germany
      • 10.3.6.2.UK
      • 10.3.6.3.France
      • 10.3.6.4.Italy
      • 10.3.6.5.Russia
      • 10.3.6.6.Rest of Europe
  • 10.4.South America
    • 10.4.1.Introduction
    • 10.4.2.Key Region-Specific Dynamics
    • 10.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Printing Technology
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1.Brazil
      • 10.4.6.2.Argentina
      • 10.4.6.3.Rest of South America
  • 10.5.Asia-Pacific
    • 10.5.1.Introduction
    • 10.5.2.Key Region-Specific Dynamics
    • 10.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Printing Technology
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1.China
      • 10.5.6.2.India
      • 10.5.6.3.Japan
      • 10.5.6.4.Australia
      • 10.5.6.5.Rest of Asia-Pacific
  • 10.6.Middle East and Africa
    • 10.6.1.Introduction
    • 10.6.2.Key Region-Specific Dynamics
    • 10.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Printing Technology
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11.Competitive Landscape

  • 11.1.Competitive Scenario
  • 11.2.Market Positioning/Share Analysis
  • 11.3.Mergers and Acquisitions Analysis

12.Company Profiles

  • 12.1.CCL Industries, Inc.*
    • 12.1.1.Company Overview
    • 12.1.2.Product Portfolio and Description
    • 12.1.3.Financial Overview
    • 12.1.4.Key Developments
  • 12.2.Constantia Flexibles Group GmbH
  • 12.3.Coveris Holdings S.A.
  • 12.4.Huhtamaki Group
  • 12.5.Cenveo Inc.
  • 12.6.Hammer Packaging
  • 12.7.Fuji Seal International Inc.
  • 12.8.Avery Dennison Corporation
  • 12.9.Innovia Films Ltd.
  • 12.10.Inland

LIST NOT EXHAUSTIVE

13.Appendix

  • 13.1.About Us and Services
  • 13.2.Contact Us