全球天氣預報雷射雷達市場 - 2023-2030 年
市場調查報告書
商品編碼
1316228

全球天氣預報雷射雷達市場 - 2023-2030 年

Global Lidar For Weather Forecasting Market - 2023-2030

出版日期: | 出版商: DataM Intelligence | 英文 180 Pages | 商品交期: 約2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

市場概述

全球天氣預報雷射雷達市場規模在2022 年達到6.3 億美元,預計到2030 年將達到24.49 億美元,2023-2030 年的年複合成長率為18.5%。在預測期內,雷射雷達與其他天氣監測技術的整合預計將推動全球天氣預報雷射雷達市場的成長。

氣象雷射雷達通常與其他氣象監測技術(如氣象雷達、衛星和地面感測器)整合,以提供對大氣條件的全面了解。這種整合提高了氣象監測的準確性和覆蓋範圍,從而推動了對氣象雷射雷達解決方案的需求。

此外,在惡劣天氣條件下整合雷射雷達為自動駕駛汽車提供製導的想法也越來越受到重視。 2023 年5 月,汽車雷射雷達供應商Webasto 與汽車車頂系統製造商Canatu 簽訂協議,將雷射雷達整合到自動駕駛汽車的車頂上,以便在惡劣天氣條件下提供更好的測繪和可視性。

市場動態

適應氣候變化和全球變暖

氣候變化和全球變暖導致颶風、風暴和極端溫度變化等惡劣天氣事件更加頻繁發生。氣象雷射雷達技術通過提供準確、詳細的氣象數據,在監測和了解這些變化方面發揮著至關重要的作用。這些資訊對於製定有效戰略以減輕由此引發的天氣事件對生命和財產造成的損害至關重要。

氣象雷射雷達系統為氣候研究和建模工作提供了寶貴的數據。這些系統提供有關大氣條件、風型和氣溶膠濃度的詳細資訊,有助於科學家了解氣候變化動態。這些知識有助於完善氣候模型,改進未來氣候預測,並指導政府決策者制定有效的適應戰略。

對特定地點天氣資訊的需求日益成長

特定地點的天氣資訊對石油天然氣、航空和公用事業等各行業的決策至關重要。氣象雷射雷達技術可提供詳細的本地化氣象數據,包括風速、風向、溫度曲線和大氣條件。這種精確度使企業和組織能夠針對其營運地點(如風電場、海上油氣田、發電廠、機場和農田)做出明智的決策。

特定地點的天氣資訊對風險管理和安全至關重要。特定地點的天氣資訊有助於規劃作業、管理後勤以及確保人員和資產的安全。氣象雷射雷達系統可提供即時和本地化的數據,使企業能夠做出與風險緩解和安全協議相關的明智決策。

特定地點的天氣資訊對於農業作業和作物管理至關重要。農民和農學家依靠準確的本地化氣象數據來最佳化灌溉、評估作物健康狀況和管理病蟲害防治。氣象雷射雷達系統可以提供有關特定地點天氣條件的寶貴資訊,幫助農民做出數據驅動的決策,以提高作物產量、減少用水量並提高農業的整體永續性。

雷射雷達系統成本高昂

天氣預報雷射雷達系統涉及大量前期費用,用於採購雷射雷達設備、感測器、數據處理系統和相關基礎設施。這些成本包括購買或租賃雷射雷達設備、安裝和校準費用以及與現有氣象網路的整合費用。部署氣象雷射雷達所需的高額初始投資可能會成為一個障礙,特別是對於小規模或預算有限的組織而言。

氣象雷射雷達系統需要持續維護、校準和定期數據品質檢查,以確保性能準確可靠。在雷射雷達系統的整個運行週期內,與維護和保養(包括感測器校準、軟體更新和硬體維修)相關的費用可能會很高。這些經常性開支增加了總體擁有成本,可能會給預算有限的組織帶來財務挑戰。

COVID-19 影響分析

COVID-19 大流行對全球天氣預報雷射雷達市場產生了重大影響。由於大流行病造成的經濟不確定性,許多氣象雷射雷達項目和投資被擱置或推遲。包括可再生能源開發商和政府機構在內的組織機構面臨預算限制,並重新調整了支出優先次序,從而影響了氣象雷射雷達技術的採用。

大流行病凸顯了遠程監控和操作的重要性。氣象雷射雷達系統具有遠程收集數據的能力,成為監測天氣狀況和保持天氣預報連續性的重要工具。盡量減少人工干涉和遠程訪問的需求推動了對雷射雷達解決方案的需求。

人工智慧影響分析

人工智慧驅動的分析和最佳化算法可提高風能運行的性能。通過將氣象雷射雷達數據與風機性能數據相結合,人工智慧算法可以最佳化風機設置、預測維護需求並最大限度地提高能源生產。人工智慧驅動的系統可為風電場營運商提供高效決策,從而提高盈利能力。

人工智慧技術增強了氣象建模和模擬能力。通過利用氣象雷射雷達數據和歷史觀測數據,人工智慧算法可以完善氣象模型,提高模擬的準確性。這樣就能更好地理解和預測天氣現象,有助於氣候研究、備災和城市規劃。

烏克蘭-俄羅斯戰爭的影響

烏克蘭和俄羅斯之間的持續衝突對全球天氣預報雷射雷達市場產生了重大影響。這兩個國家都是用於生產雷射雷達系統中各種電子元件的惰性氣體的主要供應國。供應中斷可能會給雷射雷達系統的生產帶來短期和中期的影響。

歐洲國家和美國對俄羅斯實施了廣泛的經濟制裁,導致西方國家停止向俄羅斯提供技術產品。這導致俄羅斯公司對天氣預報雷射雷達系統的需求崩潰。許多俄羅斯公司轉向國際灰色市場採購雷射雷達技術。

目 錄

第1 章:研究方法與範圍

  • 研究方法
  • 報告的研究目標和範圍

第2章:定義和概述

第3 章:執行摘要

  • 按類型分類
  • 按組件分類
  • 按預測分類
  • 按地區分類

第四章:動態

  • 影響因素
    • 促進因素
      • 適應氣候變化和全球變暖
      • 對特定地點天氣資訊的需求日益成長
    • 限制因素
      • 雷射雷達系統成本高昂
    • 機會
    • 影響分析

第5 章:行業分析

  • 波特五力分析法
  • 供應鏈分析
  • 定價分析
  • 監管分析

第6 章:COVID-19 分析

  • COVID-19 分析
    • COVID 之前的情況
    • COVID 期間的情景
    • COVID 後的情景
  • COVID-19 期間的定價動態
  • 供需關係
  • 大流行期間與市場相關的政府計劃
  • 製造商的戰略計劃
  • 結論

第7 章:按類型分類

  • 地面
  • 空中
  • 移動式
  • 短程

第8 章:按組件

  • 雷射
  • 慣性導航系統
  • 照相機
  • 全球定位系統
  • 微電子機械系統

第9 章:預測

  • 即時預報
  • 短程
  • 中程
  • 遠程
  • 遠程

第10 章:按地區分類

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 歐洲其他地區
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳大利亞
    • 亞太其他地區
  • 中東和非洲

第11 章:競爭格局

  • 競爭格局
  • 市場定位/佔有率分析
  • 合併與收購分析

第十二章:公司簡介

  • Vaisala
    • 公司概況
    • 類型組合和描述
    • 財務概況
    • 近期發展
  • FARO
  • Aerometrex
  • Kemira OYJ
  • Sick AG
  • SureStar
  • Hexagon AB
  • Teledyne Geospatial
  • Velodyne Lidar, Inc.
  • YellowScan

第13 章:附錄

簡介目錄
Product Code: ICT6511

Market Overview

Global Lidar For Weather Forecasting Market reached US$ 630 million in 2022 and is expected to reach US$ 2,449 million by 2030, growing with a CAGR of 18.5% during the forecast period 2023-2030. During the forecast period, the integration of lidar with other weather monitoring technologies is expected to write the growth of the global lidar for weather forecasting market.

Weather lidar is often being integrated with other weather monitoring technologies, such as weather radars, satellites and ground-based sensors, to provide a comprehensive understanding of atmospheric conditions. The integration enhances the accuracy and coverage of weather monitoring, driving the demand for weather LiDAR solutions.

Furthermore, the idea of integrating lidar for guidance of autonomous vehicles in harsh weather conditions is also gaining traction. In May 2023, automotive lidar vendor Webasto signed an agreement with Canatu, a manufacturer of automotive roofing systems, to integrate lidar in autonomous vehicle roofs to provide better mapping and visibility during harsh weather conditions.

Market Dynamics

Adaption to Climate Change and Global Warming

Climate change and global warming have resulted in more frequent and severe weather events, including hurricanes, storms and extreme temperature variations. Weather lidar technology plays a crucial role in monitoring and understanding these changes by providing accurate and detailed weather data. The information is essential for developing effective strategies to mitigate damage to life and property from resulting weather events.

Weather LiDAR systems contribute valuable data for climate research and modeling efforts. The systems provide detailed information about atmospheric conditions, wind patterns and aerosol concentrations, supporting scientists in understanding climate change dynamics. The knowledge helps refine climate models, improve future climate projections and guides government policymakers in developing effective adaptation strategies.

Increasing Demand For Site-Specific Weather Information

Site-specific weather information is crucial for various industries such as oil and gas, aviation and utilities for decision-making. Weather lidar technology provides detailed and localized weather data, including wind speed, direction, temperature profiles and atmospheric conditions. This level of accuracy enables businesses and organizations to make informed decisions specific to their operational sites such as wind farms, offshore oil and gas sites, power plants, airports and agricultural fields.

Site-specific weather information is crucial for risk management and safety purposes. Site-specific weather information helps in planning operations, managing logistics and ensuring the safety of personnel and assets. Weather lidar systems provide real-time and localized data, allowing organizations to make informed decisions related to risk mitigation and safety protocols.

Site-specific weather information is essential for agricultural operations and crop management. Farmers and agronomists rely on accurate and localized weather data to optimize irrigation, assess crop health and manage pest control. Weather lidar systems provide valuable insights into site-specific weather conditions, helping farmers make data-driven decisions to enhance crop yields, reduce water usage and improve overall agricultural sustainability.

High Costs of Lidar Systems

Weather forecasting lidar systems involve substantial upfront costs for the procurement of lidar equipment, sensors, data processing systems and associated infrastructure. These costs include the purchase or lease of lidar devices, installation and calibration expenses and integration with existing meteorological networks. The high initial investment required for weather lidar deployment can be a barrier, especially for small-scale or budget-constrained organizations.

Weather LiDAR systems require ongoing maintenance, calibration and regular data quality checks to ensure accurate and reliable performance. The costs associated with maintenance and servicing, including sensor calibration, software updates and hardware repairs, can be significant over the operational lifetime of the LiDAR system. The recurring expenses add to the overall cost of ownership and may pose financial challenges for organizations with limited budgets.

COVID-19 Impact Analysis

The COVID-19 pandemic had major impact on the global lidar for weather forecasting market. Many weather lidar projects and investments were put on hold or delayed due to the economic uncertainties caused by the pandemic. Organizations, including renewable energy developers and government agencies, faced budget constraints and re-prioritized their expenditures, impacting the adoption of weather lidar technology.

The pandemic highlighted the importance of remote monitoring and operations. Weather lidar systems, with their ability to collect data remotely, became valuable tools for monitoring weather conditions and maintaining continuity in weather forecasting. The need for minimal human intervention and remote accessibility drove the demand for lidar solutions.

AI Impact Analysis

AI-driven analytics and optimization algorithms enhance the performance of wind energy operations. By combining weather lidar data with turbine performance data, AI algorithms can optimize turbine settings, predict maintenance needs and maximize energy production. AI-powered systems enable efficient decision-making for wind farm operators, leading to increased profitability.

AI techniques enhance weather modeling and simulation capabilities. By leveraging weather LiDAR data and historical observations, AI algorithms can refine weather models and improve the accuracy of simulations. This enables better understanding and prediction of weather phenomena, aiding in climate research, disaster preparedness and urban planning.

Ukraine-Russia War Impact

The ongoing conflict between Ukraine and Russia has had major implications for the global lidar for weather forecasting market. Both the countries were major suppliers of noble gases used in the production of various electronic components used in lidar systems. The disruption of their supplies is likely to cause short and medium-term complications in production of lidar systems.

European countries and U.S. have imposed wide-ranging economic sanctions on Russia, which led to the stoppage of western technology products to Russia. It has led to a collapse in demand for weather forecasting lidar systems by Russia-based companies. Many Russian companies are turning towards the international grey market to procure lidar technology.

Segment Analysis

The global diamond art painting market is segmented based on type, component, forecast and region.

Lasers are The Most Widely Utilized Component as They Form the Core of Lidar Technology

Lidar (Light Detection and Ranging) is a remote sensing technology that uses light to measure distances and create detailed maps or 3D representations of objects or environments. The most crucial component of a lidar system is the laser. Lasers emit coherent light, meaning the light waves are in phase and have a well-defined wavelength. This coherence allows for precise measurement of the time it takes for the light to travel to an object and back, enabling accurate distance measurements.

Lasers produce highly focused beams of light that can travel long distances without significant divergence. The long-range capability is crucial for lidar systems to effectively capture data over large areas or in challenging environments. Furthermore, lasers provide high-energy pulses of light, which enables lidar systems to penetrate through dense foliage, clouds, or other atmospheric conditions.

Geographical Analysis

Increasing Renewable Energy Adoption is Expected to Propel Market Growth in Europe

Europe has been at the forefront of renewable energy adoption, particularly in offshore wind power. According to WindEurope, the region currently had a wind generation capacity of 255 GW in 2022 and is expected to install 129 GW of new capacity over a three year period from 2023-2027. Weather lidar plays a crucial role in wind resource assessment, wind farm planning and optimization.

European countries foster collaboration among industry stakeholders, research institutions and government agencies to promote the adoption and advancement of weather forecasting lidar technology. Collaborative projects and initiatives focus on developing standards, sharing best practices and driving innovation in the field of weather forecasting lidar. For instance, in June 2022, a team of researchers from ETH Zurich in Switzerland, published a research paper documenting the usage of snowfall simulation to improve the 3D detection capabilities of weather forecasting lidar technology.

Competitive Landscape

The major global players include: Vaisala, FARO, Aerometrex, Kemira OYJ, Sick AG, SureStar, Hexagon AB, Teledyne Geospatial, Velodyne Lidar, Inc. and YellowScan.

Why Purchase the Report?

  • To visualize the global lidar for weather forecasting market segmentation based on type, component, forecast and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of diamond art painting market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global lidar for weather forecasting market report would provide approximately 57 tables, 62 figures and 180 Pages.

Target Audience 2023

  • Lidar Manufacturers
  • Weather Forecasting Companies
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Component
  • 3.3. Snippet by Forecast
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Adaption to climate change and global warming
      • 4.1.1.2. Increasing Demand For Site-Specific Weather Information
    • 4.1.2. Restraints
      • 4.1.2.1. High costs of Lidar systems
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Terrestrial*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Aerial
  • 7.4. Mobile
  • 7.5. Short Range

8. By Component

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 8.1.2. Market Attractiveness Index, By Component
  • 8.2. Laser*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Inertial Navigation System
  • 8.4. Camera
  • 8.5. GPS GNSS
  • 8.6. Micro electro mechanical system

9. By Forecast

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Forecast
    • 9.1.2. Market Attractiveness Index, By Forecast
  • 9.2. Nowcast*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Short-Range
  • 9.4. Medium-Range
  • 9.5. Extended-Range
  • 9.6. Long-Range

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Forecast
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Forecast
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Spain
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Forecast
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Forecast
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Forecast
    • 10.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Vaisala*
    • 12.1.1. Company Overview
    • 12.1.2. Type Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Recent Developments
  • 12.2. FARO
  • 12.3. Aerometrex
  • 12.4. Kemira OYJ
  • 12.5. Sick AG
  • 12.6. SureStar
  • 12.7. Hexagon AB
  • 12.8. Teledyne Geospatial
  • 12.9. Velodyne Lidar, Inc.
  • 12.10. YellowScan

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us