2023-2030年全球碳化矽功率半導體市場
市場調查報告書
商品編碼
1247455

2023-2030年全球碳化矽功率半導體市場

Global SiC Power Semiconductor Market - 2023-2030

出版日期: | 出版商: DataM Intelligence | 英文 190 Pages | 商品交期: 約2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

市場概覽

SiC 功率半導體的全球市場在預測期內(2023 年至 2030 年)以 33.1% 的複合年增長率增長。

電動汽車和可再生能源系統等各種應用對節能環保解決方案的需求不斷增長。 與傳統的矽基功率半導體相比,SiC 功率半導體的效率和熱穩定性更高,因此越來越多地用於高功率和高溫應用。 SiC 功率半導體的技術進步促進了性能和成本效益更高的新產品的開發。

市場動態

碳化矽功率半導體技術進展

SiC功率半導體技術的進步已成為全球SiC功率半導體市場增長的重要驅動因素。 與傳統的矽基器件相比,SiC 功率半導體具有多項優勢,包括高效率、高功率密度和高溫運行。 SiC 功率半導體技術的最新進展,例如 SiC MOSFET 的開發,進一步提高了 SiC 功率電子器件的性能和可靠性。

SiC MOSFET 是一種晶體管類型,它使用碳化矽作為柵極氧化膜,而不是傳統的二氧化矽。 這種設計有幾個優點,例如低導通電阻、快速開關和降低柵極驅動要求。 這些優勢有助於降低碳化矽電力電子產品的成本並提高效率,使其與傳統的矽基設備相比更具競爭力。

碳化矽功率半導體成本高

碳化矽 (SiC) 功率半導體的高成本是阻礙全球市場增長的主要因素之一。 SiC 功率半導體由優質材料製成,這使得它們的製造成本很高。 此外,碳化矽功率半導體的製造工藝複雜,需要特殊的設備和工藝,進一步增加了成本。

SiC 功率半導體的高成本是廣泛採用的主要障礙,尤其是在對成本敏感的消費類和工業應用中。 高成本也使中小企業和初創企業難以進入,這可能會限制市場的創新和競爭。

COVID-19 影響分析

除了 COVID 前、COVID 和 COVID 後情景外,COVID-19 分析還包括價格動態(包括大流行期間的價格變化以及相對於 COVID 前情景的價格變化)、供需範圍(交易限制、 lockdowns),由於後續問題導致的供需變化),政府舉措(政府機構為振興市場,部門和行業所做的努力),以及製造商的戰略舉措(製造商為緩解 COVID 問題所做的努力)。我正在解釋。

內容

第 1 章研究方法和範圍

  • 調查方法
  • 調查目的和範圍

第 2 章定義和概述

第 3 章執行摘要

  • 組件片段
  • 按應用程序摘錄
  • 最終用戶摘錄
  • 區域摘要

第 4 章動力學

  • 影響因子
    • 司機
      • 碳化矽功率半導體技術的進步
    • 約束因素
      • SiC 功率半導體的成本增加
    • 機會
    • 影響分析

第五章行業分析

  • 波特的五力分析
  • 供應鏈分析
  • 價格分析
  • 監管分析

第 6 章 COVID-19 分析

  • COVID-19 分析
    • 在 COVID-19 情景之前
    • 當前的 COVID-19 情景
    • COVID-19 後或未來情景
  • COVID-19 期間的價格動態
  • 供需範圍
  • 大流行期間與市場相關的政府舉措
  • 製造商的戰略舉措
  • 結論

第 7 章(按組件)

  • SiC 離散
  • 碳化矽模塊
  • SiC功率集成電路

第八章應用

  • 電源
  • 電動汽車
  • 可再生能源系統
  • 工業電機驅動
  • 其他

第 9 章最終用戶

  • 電源
  • 能源和電力
  • 消費類電子產品
  • 工業
  • 溝通
  • 航空航天與國防
  • 其他

第10章按地區

  • 北美
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 意大利
    • 俄羅斯
    • 其他歐洲
  • 南美洲
    • 巴西
    • 阿根廷
    • 其他南美洲
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳大利亞
    • 其他亞太地區
  • 中東和非洲

第11章競爭格局

  • 競爭場景
  • 市場分析/份額分析
  • 併購分析

第12章公司簡介

  • 意法半導體公司
    • 公司簡介
    • 產品組合和說明
    • 財務摘要
    • 主要發展
  • Infineon Technologies AG
  • SemiQ Inc.
  • Microchip Technology
  • GeneSiC Semiconductor Inc.
  • Danfoss A/S
  • Microsemi Corporation
  • Toshiba Corporation
  • Mitsubishi Electric Corporation
  • Fuji Electric Co. Ltd.

第13章 附錄

簡介目錄
Product Code: ICT6331

Market Overview

The global SiC power semiconductor market reached US$ XX million in 2022 and is projected to witness lucrative growth by reaching up to US$ XX million by 2030. The market is growing at a CAGR of 33.1% during the forecast period (2023-2030).

Rising demand for energy-efficient and environmentally friendly solutions in various applications, such as electric vehicles and renewable energy systems. Growing adoption of SiC power semiconductors in high-power and high-temperature applications due to their higher efficiency and thermal stability compared to traditional Silicon-based power semiconductors. Technological advancements in SiC power semiconductors led to the development of new products with improved performance and cost-effectiveness.

Market Dynamics

Advancements in SiC power semiconductor technology

Advancements in SiC power semiconductor technology are a significant driving factor for the global SiC power semiconductor market growth. SiC power semiconductors offer several advantages over traditional silicon-based devices, such as higher efficiency, higher power densityand higher temperature operation. Recent advancements in SiC power semiconductor technology, such as the development of SiC MOSFETs, have further improved the performance and reliability of SiC power electronics.

SiC MOSFETs are a transistor type that uses a gate oxide layer made of silicon carbide rather than traditional silicon dioxide. This design offers several advantages, including lower on-resistance, faster switching speedsand reduced gate drive requirements. These benefits help to reduce the cost and improve the efficiency of SiC power electronics, making them more competitive with traditional silicon-based devices.

The high cost of SiC power semiconductors

The high cost of Silicon Carbide (SiC) power semiconductors is one of the main factors hampering the growth of the global market. SiC power semiconductors are made of high-quality materials, which are expensive to manufacture. Additionally, the production process of SiC power semiconductors is complex and requires specialized equipment and technology, which further increases the cost.

The high cost of SiC power semiconductors is a major barrier to widespread adoption, especially for consumer and industrial applications where cost sensitivity is high. The high cost of these devices also makes them less accessible to smaller companies and startups, which can limit innovation and competition in the market.

COVID-19 Impact Analysis

The COVID-19 Analysis includes Pre-COVID Scenario, COVID Scenario and Post-COVID Scenario along with Pricing Dynamics (Including pricing change during and post-pandemic comparing it with pre-COVID scenarios), Demand-Supply Spectrum (Shift in demand and supply owing to trading restrictions, lockdown and subsequent issues), Government Initiatives (Initiatives to revive market, sector or Industry by Government Bodies) and Manufacturers Strategic Initiatives (What manufacturers did to mitigate the COVID issues will be covered here).

Segment Analysis

The global SiC power semiconductor market is segmented based on component, application, end-user and region.

The growing popularity of SiC discrete contributes to the global market growth

SiC discrete are an important part of the SiC power semiconductor market and have supported its growth. Discrete devices are individual components used to control the electricity flow in a circuit and they offer many benefits compared to traditional silicon-based devices. SiC discrete are an important component of the SiC power semiconductor market. They have helped to drive its growth by enabling higher efficiency, higher switching frequency, smaller sizeand increased reliability. As the demand for high-performance, energy-efficient devices continues to grow. SiC discrete are expected to play an increasingly important role in the global semiconductor market.

Geographical Analysis

Growing demand for renewable energy and increased technological advancements in the region augment the growth of the North American market

North American countries such as U.S. and Canada have been at the forefront of technological advancements in SiC power semiconductors. Many of the leading SiC power semiconductor companies are based in North America and they are constantly investing in their research and development to enhance the performance and reduce the cost of SiC power devices. The growing shift towards renewable energy sources such as wind and solar drives the demand for SiC power semiconductors in North America. SiC power devices are more efficient than traditional silicon-based devices, making them ideal for renewable energy applications.

Competitive Landscape

The major global players in the market include: Nouryon, Dow, BASF, Kemira OYJ, Mitsubishi Chemical Holdings Corporation, ADM, Nippon Shokubai Co. Ltd., Ascend Performance Materials, Hexion and Eastman Chemical Company.

Why Purchase the Report?

  • To visualize the global SiC power semiconductor market segmentation based on component, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of SiC power semiconductor market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global SiC power semiconductor market report would provide approximately 61 tables, 63 figures and 190 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Component
  • 3.2. Snippet by Application
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Advancements in SiC power semiconductor technology
      • 4.1.1.2. XX
    • 4.1.2. Restraints
      • 4.1.2.1. The high cost of SiC power semiconductors
      • 4.1.2.2. XX
    • 4.1.3. Opportunity
      • 4.1.3.1. XX
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Before COVID-19 Scenario
    • 6.1.2. Present COVID-19 Scenario
    • 6.1.3. Post COVID-19 or Future Scenario
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Component

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 7.1.2. Market Attractiveness Index, By Component
  • 7.2. SiC Discrete*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. SiC Modules
  • 7.4. SiC Power Integrated Circuit

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Power Supplies*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Electric Vehicles
  • 8.4. Renewable Energy Systems
  • 8.5. Industrial Motor Drives
  • 8.6. Others

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Power Supplies*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Energy and Power
  • 9.4. Consumer Electronics
  • 9.5. Industrial
  • 9.6. Telecommunications
  • 9.7. Aerospace and Defense
  • 9.8. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Russia
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. STMicroelectronics NV*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Infineon Technologies AG
  • 12.3. SemiQ Inc.
  • 12.4. Microchip Technology
  • 12.5. GeneSiC Semiconductor Inc.
  • 12.6. Danfoss A/S
  • 12.7. Microsemi Corporation
  • 12.8. Toshiba Corporation
  • 12.9. Mitsubishi Electric Corporation
  • 12.10. Fuji Electric Co. Ltd.

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us