封面
市場調查報告書
商品編碼
1789335

全球人工光合作用市場規模研究與預測,按應用(碳氫化合物、氫氣、化學品)按技術(共電解、光電催化、奈米技術、混合製程)分類,以及 2025 年至 2035 年區域預測

Global Artificial Photosynthesis Market Size Study & Forecast, by Application (Hydrocarbon, Hydrogen, Chemicals) by Technology (Co-Electrolysis, Photo-Electro Catalysis, Nanotechnology, Hybrid Process) and Regional Forecasts 2025-2035

出版日期: | 出版商: Bizwit Research & Consulting LLP | 英文 285 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球人工光合作用市場價值約為 0.8 億美元,預計在 2025-2035 年預測期內將以 14.60% 的顯著複合年成長率成長。人工光合作用是一項革命性的科學創新,它複製了光合作用的自然過程,將太陽能、二氧化碳和水轉化為再生燃料和化學物質。這項未來技術有可能透過提供永續的碳中性途徑來生產氫氣、碳氫化合物和有價值的化學原料,從根本上改變能源模式。在日益成長的環境問題和減少溫室氣體排放的監管壓力不斷增加的背景下,對更清潔能源替代品的需求激增——人工光合作用成為全球能源轉型的關鍵推動因素。這激發了公共和私營部門對研發和中試規模部署的投資。

對實現淨零目標的日益關注,促使各國政府和各行各業優先考慮突破性的能源解決方案。人工光合作用正處於這一前沿,它釋放了無需依賴化石中間體即可直接利用陽光進行燃料合成的潛力。奈米技術、光催化和共電解領域的最新進展正在加速可擴展、高效且具有商業可行性的系統的開發。根據國際能源總署 (IEA) 的報告,到 2030 年,低碳氫化合物產量必須大幅增加才能實現氣候目標,這將直接惠及人工光合作用等新興技術。此外,綠色氫能作為已開發經濟體清潔能源策略的基石,正在為該市場的蓬勃發展創造肥沃的土壤。

從地理分佈來看,北美憑藉其強大的創新生態系統、對清潔技術研發的高投入以及支持脫碳的積極政策框架,目前在人工光合作用領域佔據主導地位。尤其在美國,越來越多的國家實驗室和研究機構參與探索可擴展的人工光合作用系統。在雄心勃勃的綠色協議和氫能戰略的推動下,歐洲也正在蓬勃發展。德國和荷蘭等國家正致力於將人工光合作用融入循環碳經濟。同時,亞太地區正在崛起成為一個高成長區域,這得益於不斷成長的能源需求、日本和韓國等國政府的支持性舉措以及該地區對採用新型永續技術的重視。

本研究旨在確定近年來不同細分市場和國家的市場規模,並預測未來幾年的市場規模。報告旨在結合研究對象國家/地區的產業定性和定量分析。報告還提供了決定市場未來成長的關鍵因素(例如促進因素和挑戰)的詳細資訊。此外,報告還涵蓋了微觀市場中利害關係人的潛在投資機會,以及對競爭格局和主要參與者產品供應的詳細分析。市場區隔和子細分市場的詳細解釋如下:

目錄

第1章:全球人工光合作用市場報告範圍與方法

  • 研究目標
  • 研究方法
    • 預測模型
    • 案頭研究
    • 自上而下和自下而上的方法
  • 研究屬性
  • 研究範圍
    • 市場定義
    • 市場區隔
  • 研究假設
    • 包容與排斥
    • 限制
    • 研究涵蓋的年份

第2章:執行摘要

  • CEO/CXO 立場
  • 戰略洞察
  • ESG分析
  • 主要發現

第3章:全球人工光合作用市場力量分析

  • 影響全球人工光合作用市場的市場力量(2024-2035)
  • 驅動程式
    • 對清潔和永續氫能及燃料的需求激增
    • 奈米科技與光電催化技術創新
  • 限制
    • 資金投入高,轉換效率低
    • 大規模商業部署和基礎設施準備不足
  • 機會
    • 政府激勵措施和綠色氫能路線圖
    • 脫碳重點產業和循環經濟的需求不斷成長

第4章:全球人工光合作用產業分析

  • 波特五力模型
    • 買方議價能力
    • 供應商的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭對手
  • 波特五力預測模型(2024-2035)
  • PESTEL分析
    • 政治的
    • 經濟
    • 社會的
    • 科技
    • 環境的
    • 合法的
  • 最佳投資機會
  • 最佳制勝策略(2025年)
  • 市佔率分析(2024-2025)
  • 2025年全球定價分析與趨勢
  • 分析師建議與結論

第5章:全球人工光合作用市場規模與預測:按應用 - 2025-2035 年

  • 市場概覽
  • 全球人工光合作用市場表現-潛力分析(2025年)
  • 化學品

第6章:全球人工光合作用市場規模與預測:依技術分類 - 2025-2035 年

  • 市場概覽
  • 全球人工光合作用市場表現-潛力分析(2025年)
  • 共電解
  • 光電催化
  • 奈米科技
  • 混合工藝

第7章:全球人工光合作用市場規模與預測:按地區 - 2025-2035

  • 區域市場概況
  • 領先國家和新興國家
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 西班牙
    • 義大利
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 亞太其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
  • 中東和非洲
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯
    • 南非
    • 中東和非洲其他地區

第 8 章:競爭情報

  • 頂級市場策略
  • BASF SE
    • 公司概況
    • 主要高階主管
    • 公司概況
    • 財務表現(取決於數據可用性)
    • 產品/服務端口
    • 近期發展
    • 市場策略
    • SWOT分析
  • TotalEnergies SE
  • Siemens Energy
  • Chevron Phillips Chemical Company
  • Panasonic Corporation
  • Toshiba Corporation
  • Halliburton Company
  • Schlumberger Limited
  • Baker Hughes Company
  • Croda International Plc.
  • Trican Well Service Ltd.
  • Impact Fluid Solutions
  • M&D Industries Of Louisiana, Inc.
  • Aubin Group
  • Air Liquide
簡介目錄

The Global Artificial Photosynthesis Market is valued at approximately USD 0.08 billion in 2024 and is projected to grow at a remarkable CAGR of 14.60% over the forecast period 2025-2035. Artificial photosynthesis is a revolutionary scientific innovation that replicates the natural process of photosynthesis to convert solar energy, carbon dioxide, and water into renewable fuels and chemicals. This futuristic technology has the potential to radically transform the energy landscape by offering a sustainable and carbon-neutral pathway for producing hydrogen, hydrocarbons, and valuable chemical feedstocks. Amid mounting environmental concerns and increasing regulatory pressure to reduce greenhouse gas emissions, the demand for cleaner energy alternatives has skyrocketed-positioning artificial photosynthesis as a key enabler in the global energy transition. This has galvanized investments across R&D and pilot-scale deployments from public and private sectors alike.

The escalating focus on achieving net-zero targets has driven governments and industries to prioritize breakthrough energy solutions. Artificial photosynthesis stands at this frontier, unlocking the potential to harness sunlight directly for fuel synthesis without relying on fossil intermediaries. Recent advancements in nanotechnology, photocatalysis, and co-electrolysis are accelerating the development of scalable, efficient systems with commercial viability. According to a report from the International Energy Agency (IEA), low-carbon hydrogen production must increase significantly by 2030 to meet climate goals, which directly benefits emerging technologies like artificial photosynthesis. Furthermore, the rise of green hydrogen as a cornerstone of clean energy strategies in developed economies is creating a fertile ground for this market to flourish.

From a geographical standpoint, North America currently dominates the artificial photosynthesis landscape owing to its robust innovation ecosystem, high investment in clean technology R&D, and proactive policy framework supporting decarbonization. The United States, in particular, has witnessed growing participation from national labs and research institutions in exploring scalable artificial photosynthesis systems. Europe is also gaining momentum, driven by its ambitious Green Deal and hydrogen strategy. Countries such as Germany and the Netherlands are focusing on integrating artificial photosynthesis into circular carbon economies. Meanwhile, the Asia Pacific region is emerging as a high-growth zone, propelled by rising energy demand, supportive government initiatives in countries like Japan and South Korea, and the region's focus on adopting novel sustainable technologies.

Major market player included in this report are:

  • BASF SE
  • Chevron Phillips Chemical Company
  • Baker Hughes Company
  • Halliburton Company
  • Schlumberger Limited
  • Croda International Plc.
  • Trican Well Service Ltd.
  • Impact Fluid Solutions
  • Aubin Group
  • M&D Industries Of Louisiana, Inc.
  • Air Liquide
  • Siemens Energy
  • Panasonic Corporation
  • Toshiba Corporation
  • TotalEnergies SE

Global Artificial Photosynthesis Market Report Scope:

  • Historical Data - 2023, 2024
  • Base Year for Estimation - 2024
  • Forecast period - 2025-2035
  • Report Coverage - Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Regional Scope - North America; Europe; Asia Pacific; Latin America; Middle East & Africa
  • Customization Scope - Free report customization (equivalent up to 8 analysts' working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values for the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within the countries involved in the study. The report also provides detailed information about crucial aspects, such as driving factors and challenges, which will define the future growth of the market. Additionally, it incorporates potential opportunities in micro-markets for stakeholders to invest, along with a detailed analysis of the competitive landscape and product offerings of key players. The detailed segments and sub-segments of the market are explained below:

By Application:

  • Hydrocarbon
  • Hydrogen
  • Chemicals

By Technology:

  • Co-Electrolysis
  • Photo-Electro Catalysis
  • Nanotechnology
  • Hybrid Process

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • Rest of Europe
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • Rest of Asia Pacific
  • Latin America
  • Brazil
  • Mexico
  • Middle East & Africa
  • UAE
  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Key Takeaways:

  • Market Estimates & Forecast for 10 years from 2025 to 2035.
  • Annualized revenues and regional level analysis for each market segment.
  • Detailed analysis of geographical landscape with Country level analysis of major regions.
  • Competitive landscape with information on major players in the market.
  • Analysis of key business strategies and recommendations on future market approach.
  • Analysis of competitive structure of the market.
  • Demand side and supply side analysis of the market.

Table of Contents

Chapter 1. Global Artificial Photosynthesis Market Report Scope & Methodology

  • 1.1. Research Objective
  • 1.2. Research Methodology
    • 1.2.1. Forecast Model
    • 1.2.2. Desk Research
    • 1.2.3. Top Down and Bottom-Up Approach
  • 1.3. Research Attributes
  • 1.4. Scope of the Study
    • 1.4.1. Market Definition
    • 1.4.2. Market Segmentation
  • 1.5. Research Assumption
    • 1.5.1. Inclusion & Exclusion
    • 1.5.2. Limitations
    • 1.5.3. Years Considered for the Study

Chapter 2. Executive Summary

  • 2.1. CEO/CXO Standpoint
  • 2.2. Strategic Insights
  • 2.3. ESG Analysis
  • 2.4. Key Findings

Chapter 3. Global Artificial Photosynthesis Market Forces Analysis

  • 3.1. Market Forces Shaping the Global Artificial Photosynthesis Market (2024-2035)
  • 3.2. Drivers
    • 3.2.1. Surging demand for clean and sustainable hydrogen and fuels
    • 3.2.2. Technological innovation in nanotechnology and photo-electro catalysis
  • 3.3. Restraints
    • 3.3.1. High capital investment and low conversion efficiency
    • 3.3.2. Limited large-scale commercial deployment and infrastructure readiness
  • 3.4. Opportunities
    • 3.4.1. Government incentives and green hydrogen roadmaps
    • 3.4.2. Rising demand from decarbonization-focused sectors and circular economies

Chapter 4. Global Artificial Photosynthesis Industry Analysis

  • 4.1. Porter's 5 Forces Model
    • 4.1.1. Bargaining Power of Buyer
    • 4.1.2. Bargaining Power of Supplier
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
  • 4.2. Porter's 5 Force Forecast Model (2024-2035)
  • 4.3. PESTEL Analysis
    • 4.3.1. Political
    • 4.3.2. Economical
    • 4.3.3. Social
    • 4.3.4. Technological
    • 4.3.5. Environmental
    • 4.3.6. Legal
  • 4.4. Top Investment Opportunities
  • 4.5. Top Winning Strategies (2025)
  • 4.6. Market Share Analysis (2024-2025)
  • 4.7. Global Pricing Analysis and Trends 2025
  • 4.8. Analyst Recommendation & Conclusion

Chapter 5. Global Artificial Photosynthesis Market Size & Forecasts by Application 2025-2035

  • 5.1. Market Overview
  • 5.2. Global Artificial Photosynthesis Market Performance - Potential Analysis (2025)
  • 5.3. Hydrocarbon
    • 5.3.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 5.3.2. Market Size Analysis, by Region, 2025-2035
  • 5.4. Hydrogen
    • 5.4.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 5.4.2. Market Size Analysis, by Region, 2025-2035
  • 5.5. Chemicals
    • 5.5.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 5.5.2. Market Size Analysis, by Region, 2025-2035

Chapter 6. Global Artificial Photosynthesis Market Size & Forecasts by Technology 2025-2035

  • 6.1. Market Overview
  • 6.2. Global Artificial Photosynthesis Market Performance - Potential Analysis (2025)
  • 6.3. Co-Electrolysis
    • 6.3.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 6.3.2. Market Size Analysis, by Region, 2025-2035
  • 6.4. Photo-Electro Catalysis
    • 6.4.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 6.4.2. Market Size Analysis, by Region, 2025-2035
  • 6.5. Nanotechnology
    • 6.5.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 6.5.2. Market Size Analysis, by Region, 2025-2035
  • 6.6. Hybrid Process
    • 6.6.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 6.6.2. Market Size Analysis, by Region, 2025-2035

Chapter 7. Global Artificial Photosynthesis Market Size & Forecasts by Region 2025-2035

  • 7.1. Regional Market Snapshot
  • 7.2. Top Leading & Emerging Countries
  • 7.3. North America Artificial Photosynthesis Market
    • 7.3.1. U.S.
      • 7.3.1.1. Application Breakdown Size & Forecasts, 2025-2035
      • 7.3.1.2. Technology Breakdown Size & Forecasts, 2025-2035
    • 7.3.2. Canada
      • 7.3.2.1. Application Breakdown Size & Forecasts, 2025-2035
      • 7.3.2.2. Technology Breakdown Size & Forecasts, 2025-2035
  • 7.4. Europe Artificial Photosynthesis Market
    • 7.4.1. UK
      • 7.4.1.1. Application Breakdown Size & Forecasts, 2025-2035
      • 7.4.1.2. Technology Breakdown Size & Forecasts, 2025-2035
    • 7.4.2. Germany
    • 7.4.3. France
    • 7.4.4. Spain
    • 7.4.5. Italy
    • 7.4.6. Rest of Europe
  • 7.5. Asia Pacific Artificial Photosynthesis Market
    • 7.5.1. China
    • 7.5.2. India
    • 7.5.3. Japan
    • 7.5.4. Australia
    • 7.5.5. South Korea
    • 7.5.6. Rest of Asia Pacific
  • 7.6. Latin America Artificial Photosynthesis Market
    • 7.6.1. Brazil
    • 7.6.2. Mexico
  • 7.7. Middle East & Africa Artificial Photosynthesis Market
    • 7.7.1. UAE
    • 7.7.2. Saudi Arabia
    • 7.7.3. South Africa
    • 7.7.4. Rest of Middle East & Africa

Chapter 8. Competitive Intelligence

  • 8.1. Top Market Strategies
  • 8.2. BASF SE
    • 8.2.1. Company Overview
    • 8.2.2. Key Executives
    • 8.2.3. Company Snapshot
    • 8.2.4. Financial Performance (Subject to Data Availability)
    • 8.2.5. Product/Services Port
    • 8.2.6. Recent Development
    • 8.2.7. Market Strategies
    • 8.2.8. SWOT Analysis
  • 8.3. TotalEnergies SE
  • 8.4. Siemens Energy
  • 8.5. Chevron Phillips Chemical Company
  • 8.6. Panasonic Corporation
  • 8.7. Toshiba Corporation
  • 8.8. Halliburton Company
  • 8.9. Schlumberger Limited
  • 8.10. Baker Hughes Company
  • 8.11. Croda International Plc.
  • 8.12. Trican Well Service Ltd.
  • 8.13. Impact Fluid Solutions
  • 8.14. M&D Industries Of Louisiana, Inc.
  • 8.15. Aubin Group
  • 8.16. Air Liquide