封面
市場調查報告書
商品編碼
1881344

全球野火探測系統市場:依組件、技術、應用和地區劃分 - 市場規模、行業趨勢、機會分析和預測(2025-2033 年)

Global Forest Wildfire Detection System Market: By Component, Technology, Application, Region - Market Size, Industry Dynamics, Opportunity Analysis and Forecast For 2025-2033

出版日期: | 出版商: Astute Analytica | 英文 197 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

全球野火偵測系統市場正經歷顯著成長,反映出全球對高效火災監測和管理解決方案的需求日益增長。 2024 年,該市場規模約為 7.7264 億美元,這得益於野火風險的增加和先進探測技術的廣泛應用,市場基礎穩固。展望未來,預計該市場將繼續穩定成長,到 2033 年將超過 13.3899 億美元。 2025 年至 2033 年的複合年增長率 (CAGR) 為 6.30%,這印證了野火探測系統在全球範圍內的持續擴張及其日益增長的重要性。

推動市場成長的關鍵因素有很多,其中最主要的是氣候變遷導致野火發生的頻率和嚴重程度不斷增加。氣溫上升、長期乾旱和氣候模式變化加劇了野火的發生,使得早期發現和快速反應比以往任何時候都更加重要。世界各國政府正在透過實施旨在提高野火防範和緩解能力的嚴格法規來應對這項挑戰,從而推動了對更先進探測系統的需求。技術的快速進步也在市場轉型中發揮關鍵作用。

市場趨勢

野火探測系統市場競爭格局瞬息萬變,既有成熟企業,也有創新新創公司,它們透過技術突破和全面的服務組合來爭奪市場領導地位。這種多元化的市場參與者正在推動快速創新,並擴大解決方案的範圍,以應對日益嚴重的全球野火威脅。哥倫比亞於2025年11月啟動了一項基於衛星的國家野火探測計劃,就是這一趨勢的一個顯著例證。這項開創性的措施在拉丁美洲尚屬首例,它得益於國家災害風險管理部門(UNGRD)與OroraTech的策略合作,並得到了當地經銷商GeoSpatial的支持。

另一個重大進展是,以色列航空航太工業公司 (IAI) 和 Fire Free Forest (3F) 於 2025 年 7 月簽署了一份戰略諒解備忘錄 (MOU),共同開發先進的空中滅火平台。此次合作旨在利用尖端技術和作戰能力來應對日益嚴重的全球野火威脅。該平台基於 IAI 的 767BDSF,這是一款經過大幅改裝的 BEDEK 特種運輸機,專為滅火任務而設計。這款創新空中系統旨在增強快速反應能力,並能夠更有效地從空中控制和撲滅野火。

核心成長驅動因子

人工智慧 (AI) 和機器學習 (ML) 的融合已成為野火探測系統市場的決定性因素,這標誌著其從理論可能性轉變為實用且必不可少的技術。這些先進技術不再是未來概念,而是發展成為現代探測系統的關鍵組成部分,從根本上改變了野火的識別和管理方式。人工智慧演算法擁有無與倫比的能力,能夠即時處理和分析來自衛星、無人機和地面感測器等各種來源的大量數據。這使得它們能夠檢測到人類操作員無法快速準確識別的複雜模式和細微異常。

新興機會

野火偵測的未來越來越注重精確預測潛在火災的位置和時間,這標誌著管理方式從被動回應向主動出擊的重大轉變。這一發展趨勢得益於將先進的人工智慧 (AI) 和機器學習演算法與各種資料來源(包括歷史野火記錄、當前天氣狀況以及來自各種感測器的即時輸入)相結合。透過整合這些多樣化的資料集,企業正在建立先進的風險評估模型,這些模型能夠分析複雜模式,並以前所未有的精度預測野火風險。

優化障礙

由於部署先進探測技術成本高昂,野火探測系統市場的成長面臨巨大的挑戰。 人工智慧攝影機、無人機、衛星影像和大型感測器網路等先進系統需要大量的資金投入,不僅包括初始購置和安裝成本,還包括持續的維護、資料處理和基礎設施更新。這些成本可能成為一大障礙,尤其對於預算有限的小型市政當局和地區而言,會減緩尖端偵測解決方案的普及應用。

目錄

第一章:研究架構

  • 研究目標
  • 產品概述
  • 市場區隔

第二章:研究方法

  • 質性研究
    • 一手和二手資料來源
  • 量化研究
    • 一手和二手資料來源
  • 依地區劃分的原始調查受訪者
  • 研究假設
  • 市場規模估算
  • 資料三角驗證

第三章:摘要整理:全球森林火災偵測系統市場

第四章:全球森林火災偵測系統市場概論

  • 產業價值鏈分析
    • 服務提供者
    • 最終用戶
  • 行業展望
    • 關鍵統計數據概述
  • PESTLE 分析
  • 波特五力分析
    • 供應商議價能力
    • 買方議價能力
    • 替代品威脅
    • 新進入者威脅
    • 競爭強度
  • 市場動態與趨勢
    • 成長推動因素
    • 阻礙因素
    • 挑戰
    • 主要趨勢
  • COVID-19 對市場成長趨勢的影響評估
  • 市場成長與展望
    • 市場收入預測及預測(2019-2032)
  • 競爭格局概覽
    • 市場集中度
    • 公司競爭佔有率分析(價值,2023 年)
    • 競爭格局圖

第五章:全球森林火災偵測系統市場依組件分析

  • 主要見解
  • 市場規模及預測(2019-2032 年)
    • 軟體
    • 硬體
    • 服務

第六章:全球森林火災偵測系統市場依技術分析

  • 主要見解
  • 市場規模及預測(2019-2032 年)
    • 感測器網路和監控
    • 衛星影像
    • 無人機
    • 人工智慧 (AI) 與機器學習
    • 其他

第七章 全球森林火災偵測系統市場依應用領域分析

  • 主要見解
  • 市場規模及預測 (2019-2032)
    • 早期預警系統
    • 火災監控與控制
    • 環境監測
    • 研究與保護

第八章 全球森林火災偵測系統市場依應用領域分析

  • 主要見解
  • 市場規模及預測 (2019-2032)
    • 公園
    • 森林

第九章 全球森林火災偵測系統市場依應用領域分析

  • 主要洞察
  • 市場規模及預測,2019-2032
    • 北美
    • 歐洲
    • 亞太
    • 中東和非洲
    • 南美

第十章:北美森林火災偵測系統市場分析

第十一章:歐洲森林火災偵測系統市場分析

第十二章:亞太森林火災偵測系統市場分析

第十三章:中東與非洲森林火災偵測系統市場分析

第十四章:南美洲森林火災偵測系統市場分析

第十五章:韓國森林火災偵測系統市場分析

第十六章 公司簡介

  • 羅伯特博世有限公司
  • Dryad Networks GmbH
  • Insight Robotics
  • IQ FireWatch
  • Orora Technologies
  • Paratronic
  • SmokeD
  • 其他主要廠商

第一章:研究架構

  • 研究目標
  • 產品概述
  • 市場區隔

第二章:研究架構與研究方法

  • 質性研究
    • 一手和二手資料來源
  • 量化研究
    • 一手和二手資料來源
  • 依地區劃分的原始調查受訪者
  • 研究假設
  • 市場規模估算
  • 數據三角測量

第三章:摘要整理:全球森林火災偵測系統市場

第四章:全球森林火災偵測系統市場概論

  • 產業價值鏈分析
    • 服務提供者
    • 最終用戶
  • 行業展望
    • 關鍵統計數據概述
  • PESTLE 分析
  • 波特五力分析
    • 供應商議價能力
    • 買方議價能力
    • 替代品威脅
    • 新進入者威脅
    • 競爭強度
  • 市場動態與趨勢
    • 成長推動因素
    • 阻礙因素
    • 挑戰
    • 主要趨勢
  • 新冠疫情對市場成長趨勢的影響評估
  • 市場成長與展望
    • 市場收入估計與預測(2019-2032)
  • 競爭格局概覽
    • 市場集中度
    • 公司競爭佔有率分析(價值,2023)
    • 競爭格局圖

第五章 全球森林火災偵測系統市場依組件分析

  • 主要見解
  • 市場規模與預測2019-2032
    • 軟體
    • 硬體
    • 服務

第六章:全球森林火災偵測系統市場依技術劃分的分析

  • 主要見解
  • 市場規模及預測(2019-2032)
    • 感測器網路和監控
    • 衛星影像
    • 無人機
    • 人工智慧 (AI) 與機器學習
    • 其他

第七章:全球森林火災偵測系統市場依應用劃分的分析

  • 主要見解
  • 市場規模及預測(2019-2032)
    • 早期預警系統
    • 火災監測與管理
    • 環境監測
    • 研究與保護

第八章:全球森林火災偵測系統市場區域分析

  • 主要見解
  • 市場規模及預測(2019-2032)
    • 公園
    • 森林

第九章:全球森林火災偵測系統市場區域分析

  • 主要見解
  • 市場規模及預測(2019-2032)
    • 北美
    • 歐洲
    • 亞太地區
    • 中東和非洲
    • 南美

第十章:北美森林火災偵測系統市場分析

第十一章:歐洲森林火災偵測系統市場分析

第十二章:亞太地區森林火災偵測系統市場分析

第十三章:中東與非洲森林火災偵測系統市場分析

第十四章:南美洲森林火災偵測系統市場分析

第十五章:韓國森林火災偵測系統市場分析

第十六章:公司簡介

  • 羅伯特博世有限公司
  • Dryad Networks GmbH
  • Insight Robotics
  • IQ FireWatch
  • Orora Technologies
  • Paratronic
  • SmokeD
  • 其他主要廠商
簡介目錄
Product Code: AA0923620

The global forest wildfire detection system market is undergoing substantial growth, reflecting the escalating need for effective wildfire monitoring and management solutions worldwide. In 2024, the market was valued at approximately US$ 772.64 million, demonstrating a strong foundation driven by escalating wildfire risks and the increasing adoption of advanced detection technologies. Looking ahead, the market is projected to grow steadily, with valuations expected to surpass US$ 1,338.99 million by 2033. This growth represents a compound annual growth rate (CAGR) of 6.30% over the forecast period from 2025 to 2033, underscoring the sustained expansion and rising importance of wildfire detection systems on a global scale.

Several key factors contribute to this market growth, foremost among them being the increasing incidence and severity of wildfires fueled by climate change. Rising temperatures, prolonged droughts, and changing weather patterns have intensified wildfire occurrences, making early detection and rapid response more critical than ever. Governments worldwide are responding by implementing stringent regulations aimed at improving wildfire preparedness and mitigation, which in turn drives demand for more sophisticated detection systems. Additionally, rapid technological advancements have played a pivotal role in transforming the market.

Noteworthy Market Developments

The competitive landscape in the wildfire detection system market is highly dynamic, characterized by a blend of well-established corporations and innovative startups vying to lead through technological breakthroughs and comprehensive service portfolios. This mix of players is driving rapid innovation and expanding the scope of solutions available to address the growing threat of wildfires worldwide. A notable example of this dynamic occurred in November 2025, when Colombia became the first country in Latin America to implement a national wildfire detection program utilizing satellite technology. This groundbreaking initiative was made possible through a strategic partnership between the National Unit for Disaster Risk Management (UNGRD) and OroraTech, with support from the local representative GeoSpatial.

In another significant development, Israel Aerospace Industries (IAI) and Fire Free Forests (3F) entered into a strategic Memorandum of Understanding in July 2025 to jointly develop an advanced airborne firefighting platform. This collaboration aims to address the escalating global wildfire threat with cutting-edge technology and operational capabilities. The platform will be based on the 767BDSF, an extensively modified version of IAI's BEDEK Special Freighter aircraft, specially adapted for firefighting missions. This innovative airborne system is designed to enhance rapid response capabilities, enabling more effective containment and suppression of wildfires from the air.

Core Growth Drivers

The integration of Artificial Intelligence (AI) and Machine Learning (ML) has become a defining characteristic of the wildfire detection system market, reflecting a shift from theoretical potential to practical, indispensable technology. These advanced technologies are no longer futuristic concepts but have evolved into critical elements of modern detection systems, fundamentally transforming how wildfires are identified and managed. AI algorithms have the remarkable capability to process and analyze enormous volumes of data gathered from diverse sources such as satellites, drones, and ground-based sensors in real-time. This allows for the detection of intricate patterns and subtle anomalies that would be impossible for human operators to recognize quickly or accurately.

Emerging Opportunity Trends

The future of wildfire detection is increasingly focused on the ability to precisely predict the location and timing of potential fires, marking a significant shift from reactive responses to proactive management. This evolution is driven by the integration of advanced artificial intelligence (AI) and machine learning algorithms with a broad spectrum of data sources, including historical wildfire records, current weather conditions, and real-time inputs from various sensors. By combining these diverse datasets, companies are creating sophisticated risk assessment models capable of analyzing complex patterns and forecasting wildfire risks with greater accuracy than ever before.

Barriers to Optimization

The growth of the wildfire detection system market faces notable challenges due to the high costs associated with implementing advanced detection technologies. Sophisticated systems such as AI-powered cameras, drones, satellite imaging, and extensive sensor networks require significant financial investment not only in the initial purchase and installation but also in ongoing maintenance, data processing, and infrastructure upgrades. These expenses can be prohibitive, especially for smaller municipalities or regions with limited budgets, potentially slowing the widespread adoption of cutting-edge detection solutions.

Detailed Market Segmentation

By Technology, Satellite imaging technology holds a dominant position in the forest wildfire detection system market, generating over 34.2% of the total revenue and maintaining its leadership role through ongoing advancements and investments. This technology's prominence is due to its unparalleled ability to monitor vast and often inaccessible forest areas from space, providing early warnings and detailed data critical for effective wildfire management. Currently, both public and private sectors are investing heavily in next-generation satellite constellations that enhance wildfire detection resolution, speed, and accuracy, allowing faster response times and informed decision-making.

By Component, the hardware segment is rapidly establishing itself as a crucial component in the global forest wildfire detection system market, expected to generate over 56.6% of the total revenue. This segment includes a diverse array of essential equipment, such as ground-based sensors, AI-powered cameras, and drones, all of which play a vital role in early wildfire detection and monitoring. The advancements in hardware technology have significantly enhanced the ability to identify fires at their inception, allowing for quicker response times and potentially reducing the devastating impacts of wildfires on both natural ecosystems and human communities.

By End Use, the forest segment holds a commanding dominance in the forest wildfire detection system market, accounting for over 62.20% of the total market share. This predominance is largely driven by the extensive and often remote nature of forested landscapes, which are highly vulnerable to wildfires. The sheer vastness of these areas presents unique challenges for early detection and monitoring, making specialized wildfire detection systems essential for effective management and mitigation.

By Application, Early warning and alert systems dominate the wildfire detection system market, capturing the largest share of 45.38%. As a result of this significant market share, these systems are essential for rapidly disseminating vital information among the public and emergency responders. In the event of a wildfire, their ability to provide timely alerts and warnings is essential for minimising damage, protecting lives, and allowing swift response actions. The effectiveness of these systems in communication and coordination has made them indispensable components of modern wildfire management strategies.

Segment Breakdown

By Technology

  • Sensor Network & Surveillance
  • Camera (Vision) Systems
  • Infrared (IR) Camera or Thermal Imaging Camera
  • IR spectrometers
  • LIDAR
  • Satellite Imaging
  • Drones
  • AI and Machine Learning
  • Others

By End Use

  • Park
  • Forest

By Component

  • Software
  • Hardware
  • Services

By Application

  • Early Warning and Alert Systems
  • Fire Monitoring and Management
  • Environmental Monitoring
  • Research and Conservation

By Region

  • North America
  • The US
  • Canada
  • Mexico
  • Europe
  • The U.K.
  • Germany
  • France
  • Spain
  • Poland
  • Belgium
  • Finland
  • Netherlands
  • Portugal
  • Sweden
  • Switzerland
  • Rest of Europe
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia & New Zealand
  • ASEAN
  • South Korea
  • Rest of Asia Pacific
  • Middle East & Africa
  • UAE
  • Saudi Arabia
  • Qatar
  • South Africa
  • Morocco
  • Rest of MEA
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Chile
  • Peru
  • Rest of South America

Geography Breakdown

  • North America firmly holds the position as the leading region in the forest wildfire detection system market, commanding a commanding share of over 41% globally. This dominant standing is a direct result of significant investments spurred by the increasing frequency and intensity of wildfires across the continent. Growing awareness of the devastating impacts these fires have on ecosystems, communities, and economies has prompted governments and private entities alike to prioritize early detection and rapid response technologies.
  • Within North America, the United States spearheads this market, with its wildfire detection system market projected to reach US$ 235.19 million in 2024. This growth is underpinned by a strong commitment at the federal level, exemplified by a substantial US$ 1.6 billion allocation dedicated to wildland fire management in 2025. Such significant funding reflects the urgency placed on enhancing wildfire monitoring infrastructure and improving emergency response capabilities. The financial support is enabling widespread adoption and deployment of cutting-edge detection technologies designed to identify wildfire outbreaks swiftly, minimizing damage and enhancing public safety.

Leading Market Participants

  • Robert Bosch GmbH
  • Dryad Networks GmbH
  • Insight Robotics
  • IQ FireWatch
  • Orora Technologies
  • Paratronic
  • SmokeD
  • Other Prominent Players

Table of Content

Chapter 1. Research Framework

  • 1.1 Research Objective
  • 1.2 Product Overview
  • 1.3 Market Segmentation

Chapter 2. Research Methodology

  • 2.1 Qualitative Research
    • 2.1.1 Primary & Secondary Sources
  • 2.2 Quantitative Research
    • 2.2.1 Primary & Secondary Sources
  • 2.3 Breakdown of Primary Research Respondents, By Region
  • 2.4 Assumption for the Study
  • 2.5 Market Size Estimation
  • 2.6. Data Triangulation

Chapter 3. Executive Summary: Global Forest Wildfire Detection System Market

Chapter 4. Global Forest Wildfire Detection System Market Overview

  • 4.1. Industry Value Chain Analysis
    • 4.1.1. Service Provider
    • 4.1.2. End User
  • 4.2. Industry Outlook
    • 4.2.1. Overview of key statistics
  • 4.3. PESTLE Analysis
  • 4.4. Porter's Five Forces Analysis
    • 4.4.1. Bargaining Power of Suppliers
    • 4.4.2. Bargaining Power of Buyers
    • 4.4.3. Threat of Substitutes
    • 4.4.4. Threat of New Entrants
    • 4.4.5. Degree of Competition
  • 4.5. Market Dynamics and Trends
    • 4.5.1. Growth Drivers
    • 4.5.2. Restraints
    • 4.5.3. Challenges
    • 4.5.4. Key Trends
  • 4.6. Covid-19 Impact Assessment on Market Growth Trend
  • 4.7. Market Growth and Outlook
    • 4.7.1. Market Revenue Estimates and Forecast (US$ Mn), 2019 - 2032
  • 4.8. Competition Dashboard
    • 4.8.1. Market Concentration Rates
    • 4.8.2. Company Market Share Analysis (Value %), 2023
    • 4.8.3. Competitor Mapping

Chapter 5. Global Forest Wildfire Detection System Market Analysis, By Component

  • 5.1. Key Insights
  • 5.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 5.2.1. Software
    • 5.2.2. Hardware
    • 5.2.3. Services

Chapter 6. Global Forest Wildfire Detection System Market Analysis, By Technology

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 6.2.1. Sensor Network & Surveillance
      • 6.2.1.1. Camera (Vision) Systems
      • 6.2.1.2. Infrared (IR) Camera or Thermal Imaging Camera
      • 6.2.1.3. IR spectrometers
      • 6.2.1.4. LIDAR
    • 6.2.2. Satellite Imaging
    • 6.2.3. Drones
    • 6.2.4. AI and Machine Learning
    • 6.2.5. Others

Chapter 7. Global Forest Wildfire Detection System Market Analysis, By Application

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 7.2.1. Early Warning and Alert Systems
    • 7.2.2. Fire Monitoring and Management
    • 7.2.3. Environmental Monitoring
    • 7.2.4. Research and Conservation

Chapter 8. Global Forest Wildfire Detection System Market Analysis, By End Use

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 8.2.1. Parks
    • 8.2.2. Forest

Chapter 9. Global Forest Wildfire Detection System Market Analysis, By Region

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 9.2.1. North America
      • 9.2.1.1. The U.S.
      • 9.2.1.2. Canada
      • 9.2.1.3. Mexico
    • 9.2.2. Europe
      • 9.2.2.1. Western Europe
        • 9.2.2.1.1. The UK
        • 9.2.2.1.2. Germany
        • 9.2.2.1.3. France
        • 9.2.2.1.4. Italy
        • 9.2.2.1.5. Spain
        • 9.2.2.1.6. Rest of Western Europe
      • 9.2.2.2. Eastern Europe
        • 9.2.2.2.1. Poland
        • 9.2.2.2.2. Russia
        • 9.2.2.2.3. Rest of Eastern Europe
    • 9.2.3. Asia Pacific
      • 9.2.3.1. China
      • 9.2.3.2. India
      • 9.2.3.3. Japan
      • 9.2.3.4. South Korea
      • 9.2.3.5. Australia & New Zealand
      • 9.2.3.6. ASEAN
      • 9.2.3.7. Rest of Asia Pacific
    • 9.2.4. Middle East & Africa
      • 9.2.4.1. UAE
      • 9.2.4.2. Saudi Arabia
      • 9.2.4.3. South Africa
      • 9.2.4.4. Rest of MEA
    • 9.2.5. South America
      • 9.2.5.1. Argentina
      • 9.2.5.2. Brazil
      • 9.2.5.3. Rest of South America

Chapter 10. North America Forest Wildfire Detection System Market Analysis

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 10.2.1. By Component
    • 10.2.2. By Technology
    • 10.2.3. By Application
    • 10.2.4. By End Use
    • 10.2.5. By Country

Chapter 11. Europe Forest Wildfire Detection System Market Analysis

  • 11.1. Key Insights
  • 11.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 11.2.1. By Component
    • 11.2.2. By Technology
    • 11.2.3. By Application
    • 11.2.4. By End Use
    • 11.2.5. By Country

Chapter 12. Asia Pacific Forest Wildfire Detection System Market Analysis

  • 12.1. Key Insights
  • 12.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 12.2.1. By Component
    • 12.2.2. By Technology
    • 12.2.3. By Application
    • 12.2.4. By End Use
    • 12.2.5. By Country

Chapter 13. Middle East & Africa Forest Wildfire Detection System Market Analysis

  • 13.1. Key Insights
  • 13.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 13.2.1. By Component
    • 13.2.2. By Technology
    • 13.2.3. By Application
    • 13.2.4. By End Use
    • 13.2.5. By Country

Chapter 14. South America Forest Wildfire Detection System Market Analysis

  • 14.1. Key Insights
  • 14.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 14.2.1. By Component
    • 14.2.2. By Technology
    • 14.2.3. By Application
    • 14.2.4. By End Use
    • 14.2.5. By Country

Chapter 15. South Korea Forest Wildfire Detection System Market Analysis

  • 15.1. Key Insights
  • 15.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 15.2.1. By Component
    • 15.2.2. By Technology
    • 15.2.3. By Application
    • 15.2.4. By End Use

Chapter 16. Company Profile (Company Overview, Financial Matrix, Key Product landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 16.1. Robert Bosch GmbH
  • 16.2. Dryad Networks GmbH
  • 16.3. Insight Robotics
  • 16.4. IQ FireWatch
  • 16.5. Orora Technologies
  • 16.6. Paratronic
  • 16.7. SmokeD
  • 16.8. Other Prominent Players

Chapter 1. Research Framework

  • 1.1 Research Objective
  • 1.2 Product Overview
  • 1.3 Market Segmentation

Chapter 2. Research Methodology

  • 2.1 Qualitative Research
    • 2.1.1 Primary & Secondary Sources
  • 2.2 Quantitative Research
    • 2.2.1 Primary & Secondary Sources
  • 2.3 Breakdown of Primary Research Respondents, By Region
  • 2.4 Assumption for the Study
  • 2.5 Market Size Estimation
  • 2.6. Data Triangulation

Chapter 3. Executive Summary: Global Forest Wildfire Detection System Market

Chapter 4. Global Forest Wildfire Detection System Market Overview

  • 4.1. Industry Value Chain Analysis
    • 4.1.1. Service Provider
    • 4.1.2. End User
  • 4.2. Industry Outlook
    • 4.2.1. Overview of key statistics
  • 4.3. PESTLE Analysis
  • 4.4. Porter's Five Forces Analysis
    • 4.4.1. Bargaining Power of Suppliers
    • 4.4.2. Bargaining Power of Buyers
    • 4.4.3. Threat of Substitutes
    • 4.4.4. Threat of New Entrants
    • 4.4.5. Degree of Competition
  • 4.5. Market Dynamics and Trends
    • 4.5.1. Growth Drivers
    • 4.5.2. Restraints
    • 4.5.3. Challenges
    • 4.5.4. Key Trends
  • 4.6. Covid-19 Impact Assessment on Market Growth Trend
  • 4.7. Market Growth and Outlook
    • 4.7.1. Market Revenue Estimates and Forecast (US$ Mn), 2019 - 2032
  • 4.8. Competition Dashboard
    • 4.8.1. Market Concentration Rates
    • 4.8.2. Company Market Share Analysis (Value %), 2023
    • 4.8.3. Competitor Mapping

Chapter 5. Global Forest Wildfire Detection System Market Analysis, By Component

  • 5.1. Key Insights
  • 5.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 5.2.1. Software
    • 5.2.2. Hardware
    • 5.2.3. Services

Chapter 6. Global Forest Wildfire Detection System Market Analysis, By Technology

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 6.2.1. Sensor Network & Surveillance
      • 6.2.1.1. Camera (Vision) Systems
      • 6.2.1.2. Infrared (IR) Camera or Thermal Imaging Camera
      • 6.2.1.3. IR spectrometers
      • 6.2.1.4. LIDAR
    • 6.2.2. Satellite Imaging
    • 6.2.3. Drones
    • 6.2.4. AI and Machine Learning
    • 6.2.5. Others

Chapter 7. Global Forest Wildfire Detection System Market Analysis, By Application

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 7.2.1. Early Warning and Alert Systems
    • 7.2.2. Fire Monitoring and Management
    • 7.2.3. Environmental Monitoring
    • 7.2.4. Research and Conservation

Chapter 8. Global Forest Wildfire Detection System Market Analysis, By End Use

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 8.2.1. Parks
    • 8.2.2. Forest

Chapter 9. Global Forest Wildfire Detection System Market Analysis, By Region

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 9.2.1. North America
      • 9.2.1.1. The U.S.
      • 9.2.1.2. Canada
      • 9.2.1.3. Mexico
    • 9.2.2. Europe
      • 9.2.2.1. Western Europe
        • 9.2.2.1.1. The UK
        • 9.2.2.1.2. Germany
        • 9.2.2.1.3. France
        • 9.2.2.1.4. Italy
        • 9.2.2.1.5. Spain
        • 9.2.2.1.6. Rest of Western Europe
      • 9.2.2.2. Eastern Europe
        • 9.2.2.2.1. Poland
        • 9.2.2.2.2. Russia
        • 9.2.2.2.3. Rest of Eastern Europe
    • 9.2.3. Asia Pacific
      • 9.2.3.1. China
      • 9.2.3.2. India
      • 9.2.3.3. Japan
      • 9.2.3.4. South Korea
      • 9.2.3.5. Australia & New Zealand
      • 9.2.3.6. ASEAN
      • 9.2.3.7. Rest of Asia Pacific
    • 9.2.4. Middle East & Africa
      • 9.2.4.1. UAE
      • 9.2.4.2. Saudi Arabia
      • 9.2.4.3. South Africa
      • 9.2.4.4. Rest of MEA
    • 9.2.5. South America
      • 9.2.5.1. Argentina
      • 9.2.5.2. Brazil
      • 9.2.5.3. Rest of South America

Chapter 10. North America Forest Wildfire Detection System Market Analysis

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 10.2.1. By Component
    • 10.2.2. By Technology
    • 10.2.3. By Application
    • 10.2.4. By End Use
    • 10.2.5. By Country

Chapter 11. Europe Forest Wildfire Detection System Market Analysis

  • 11.1. Key Insights
  • 11.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 11.2.1. By Component
    • 11.2.2. By Technology
    • 11.2.3. By Application
    • 11.2.4. By End Use
    • 11.2.5. By Country

Chapter 12. Asia Pacific Forest Wildfire Detection System Market Analysis

  • 12.1. Key Insights
  • 12.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 12.2.1. By Component
    • 12.2.2. By Technology
    • 12.2.3. By Application
    • 12.2.4. By End Use
    • 12.2.5. By Country

Chapter 13. Middle East & Africa Forest Wildfire Detection System Market Analysis

  • 13.1. Key Insights
  • 13.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 13.2.1. By Component
    • 13.2.2. By Technology
    • 13.2.3. By Application
    • 13.2.4. By End Use
    • 13.2.5. By Country

Chapter 14. South America Forest Wildfire Detection System Market Analysis

  • 14.1. Key Insights
  • 14.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 14.2.1. By Component
    • 14.2.2. By Technology
    • 14.2.3. By Application
    • 14.2.4. By End Use
    • 14.2.5. By Country

Chapter 15. South Korea Forest Wildfire Detection System Market Analysis

  • 15.1. Key Insights
  • 15.2. Market Size and Forecast, 2019 - 2032 (US$ Mn)
    • 15.2.1. By Component
    • 15.2.2. By Technology
    • 15.2.3. By Application
    • 15.2.4. By End Use

Chapter 16. Company Profile (Company Overview, Financial Matrix, Key Product landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 16.1. Robert Bosch GmbH
  • 16.2. Dryad Networks GmbH
  • 16.3. Insight Robotics
  • 16.4. IQ FireWatch
  • 16.5. Orora Technologies
  • 16.6. Paratronic
  • 16.7. SmokeD
  • 16.8. Other Prominent Players